From 423fe451bef9eb063aa81186917cddcaa7b542f6 Mon Sep 17 00:00:00 2001 From: Diana Date: Fri, 25 Oct 2024 17:09:29 +0200 Subject: [PATCH] Changes integral function --- code/plot_functions.py | 42 +++++++++++++++++++++++------------------- 1 file changed, 23 insertions(+), 19 deletions(-) diff --git a/code/plot_functions.py b/code/plot_functions.py index 46c7204..b35cd02 100644 --- a/code/plot_functions.py +++ b/code/plot_functions.py @@ -72,14 +72,16 @@ functions_path = r"C:\Users\diana\OneDrive - UT Cloud\Master\GPs\GP1_Grewe\Proje sys.path.append(functions_path) import useful_functions as u import matplotlib.ticker as ticker +import matplotlib.patches as mpatches def float_formatter(x, _): """Format the y-axis values as floats with a specified precision.""" return f'{x:.5f}' + def plot_highlighted_integrals(ax, frequency, power, points, color_mapping, points_categories, delta=2.5): """ - Highlight integrals on the existing axes of the power spectrum. + Highlights integrals on the existing axes of the power spectrum for a given dataset. Parameters ---------- @@ -102,38 +104,40 @@ def plot_highlighted_integrals(ax, frequency, power, points, color_mapping, poin ------- None """ - ax.plot(frequency, power, color = "k") # Plot power spectrum on the existing axes + _, _, AM, df, eodf, nyquist, stim_freq = u.sam_data(sam) + + # Plot the power spectrum on the provided axes + ax.plot(frequency, power, color="k") for point in points: - # Calculate the integral and local mean - integral, local_mean = u.calculate_integral_2(frequency, power, point) + # Identify the category for the current point + point_category = next((cat for cat, pts in points_categories.items() if point in pts), "Unknown") - # Check if the point is valid + # Assign color based on category, or default to grey if unknown + color = color_mapping.get(point_category, 'gray') + + # Calculate the integral and check validity + integral, local_mean = u.calculate_integral_2(frequency, power, point) valid = u.valid_integrals(integral, local_mean, point) - if valid: - # Define color based on the category of the point - point_category = next((cat for cat, pts in points_categories.items() if point in pts), "Unknown") - color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray') - - # Shade the region around the point where the integral was calculated + if valid: + # Highlight valid points with a shaded region ax.axvspan(point - delta, point + delta, color=color, alpha=0.2, label=f'{point_category}') - # Text with categories and colors - ax.text(1000, 5.8e-5, "AM", fontsize=10, color="green", alpha=0.2) - ax.text(1000, 5.6e-5, "Nyquist", fontsize=10, color="blue", alpha=0.2) - ax.text(1000, 5.4e-5, "EODf", fontsize=10, color="red", alpha=0.2) - ax.text(1000, 5.2e-5, "Stimulus frequency", fontsize=10, color="orange", alpha=0.2) - ax.text(1000, 5.0e-5, "EODf of awake fish", fontsize=10, color="purple", alpha=0.2) - + # Set plot limits and labels ax.set_xlim([0, 1200]) ax.set_ylim([0, 6e-5]) + ax.axvline(nyquist, color = "k", linestyle = "--") ax.set_xlabel('Frequency (Hz)') ax.set_ylabel('Power') - ax.set_title('Power Spectrum with highlighted Integrals') + ax.set_title('Power Spectrum with Highlighted Integrals') # Apply float formatting to the y-axis ax.yaxis.set_major_formatter(ticker.FuncFormatter(float_formatter)) + ax.legend(loc="upper right") + + +