Merge branch 'main' of https://whale.am28.uni-tuebingen.de/git/mbergmann/gpgrewe2024
This commit is contained in:
commit
25e51d3eed
@ -136,7 +136,7 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c
|
|||||||
ax.set_title('Power Spectrum with Highlighted Integrals')
|
ax.set_title('Power Spectrum with Highlighted Integrals')
|
||||||
ax.legend()
|
ax.legend()
|
||||||
|
|
||||||
return fig
|
return fig, ax
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,9 +1,5 @@
|
|||||||
import glob
|
|
||||||
import pathlib
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import rlxnix as rlx
|
import rlxnix as rlx
|
||||||
from IPython import embed
|
|
||||||
from scipy.signal import welch
|
from scipy.signal import welch
|
||||||
|
|
||||||
def all_coming_together(freq_array, power_array, points_list, categories, num_harmonics_list, colors, delta=2.5, threshold=0.5):
|
def all_coming_together(freq_array, power_array, points_list, categories, num_harmonics_list, colors, delta=2.5, threshold=0.5):
|
||||||
@ -513,6 +509,29 @@ def spike_times(stim):
|
|||||||
dt = ti.sampling_interval
|
dt = ti.sampling_interval
|
||||||
return spikes, stim_dur, dt # se changed spike_times to spikes so its not the same as name of function
|
return spikes, stim_dur, dt # se changed spike_times to spikes so its not the same as name of function
|
||||||
|
|
||||||
|
def true_eodf(eodf_file):
|
||||||
|
'''
|
||||||
|
Calculates the Eodf of the fish when it was awake from a nix file.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
eodf_file : str
|
||||||
|
path to the file with nix-file for the eodf.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
orig_eodf : int
|
||||||
|
The original eodf.
|
||||||
|
|
||||||
|
'''
|
||||||
|
eod_data = rlx.Dataset(eodf_file)#load eodf file
|
||||||
|
baseline = eod_data.repro_runs('baseline')[0]
|
||||||
|
eod, time = baseline.trace_data('EOD') # get time and eod
|
||||||
|
dt = baseline.trace_info('EOD').sampling_interval
|
||||||
|
eod_freq, eod_power = welch(eod, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
|
||||||
|
orig_eodf = round(eod_freq[np.argmax(eod_power)])
|
||||||
|
return orig_eodf
|
||||||
|
|
||||||
def valid_integrals(integral, local_mean, point, threshold = 0.1):
|
def valid_integrals(integral, local_mean, point, threshold = 0.1):
|
||||||
"""
|
"""
|
||||||
Check if the integral exceeds the threshold compared to the local mean and
|
Check if the integral exceeds the threshold compared to the local mean and
|
||||||
|
Loading…
Reference in New Issue
Block a user