diff --git a/code/GP_Code.py b/code/GP_Code.py index 681de80..13d87b3 100644 --- a/code/GP_Code.py +++ b/code/GP_Code.py @@ -1,11 +1,10 @@ # -*- coding: utf-8 -*- """ -Created on Tue Oct 22 11:43:41 2024 +Created on Tue Oct 22 15:21:41 2024 @author: diana """ - import glob import os import rlxnix as rlx @@ -17,8 +16,8 @@ from scipy.integrate import quad ### FUNCTIONS ### def binary_spikes(spike_times, duration, dt): - """ Converts the spike times to a binary representation. - Zeros when there is no spike, One when there is. + """Converts the spike times to a binary representation. + Zeros when there is no spike, one when there is. Parameters ---------- @@ -27,15 +26,14 @@ def binary_spikes(spike_times, duration, dt): duration : float The trial duration. dt : float - the temporal resolution. + The temporal resolution. Returns ------- binary : np.array The binary representation of the spike times. - """ - binary = np.zeros(int(np.round(duration / dt))) #Vektor, der genauso lang ist wie die stim time + binary = np.zeros(int(np.round(duration / dt))) #Vektor, der genauso lang ist wie die stim time spike_indices = np.asarray(np.round(spike_times / dt), dtype=int) binary[spike_indices] = 1 return binary @@ -44,9 +42,6 @@ def binary_spikes(spike_times, duration, dt): def firing_rate(binary_spikes, box_width, dt=0.000025): """Calculate the firing rate from binary spike data. - This function computes the firing rate using a boxcar (moving average) - filter of a specified width. - Parameters ---------- binary_spikes : np.array @@ -62,7 +57,7 @@ def firing_rate(binary_spikes, box_width, dt=0.000025): An array representing the firing rate at each time step. """ box = np.ones(int(box_width // dt)) - box /= np.sum(box) * dt #Normalization of box kernel to an integral of 1 + box /= np.sum(box) * dt # Normalization of box kernel to an integral of 1 rate = np.convolve(binary_spikes, box, mode="same") return rate @@ -90,7 +85,96 @@ def powerspectrum(rate, dt): return frequency, power +def calculate_integral(frequency, power, point, delta): + """ + Calculate the integral around a single specified point. + + Parameters + ---------- + frequency : np.array + An array of frequencies corresponding to the power values. + power : np.array + An array of power spectral density values. + point : float + The harmonic frequency at which to calculate the integral. + delta : float + Half-width of the range for integration around the point. + + Returns + ------- + integral : float + The calculated integral around the point. + local_mean : float + The local mean value (adjacent integrals). + """ + indices = (frequency >= point - delta) & (frequency <= point + delta) + integral = np.trapz(power[indices], frequency[indices]) + + left_indices = (frequency >= point - 5 * delta) & (frequency < point - delta) + right_indices = (frequency > point + delta) & (frequency <= point + 5 * delta) + + l_integral = np.trapz(power[left_indices], frequency[left_indices]) + r_integral = np.trapz(power[right_indices], frequency[right_indices]) + + local_mean = np.mean([l_integral, r_integral]) + return integral, local_mean + + +def valid_integrals(integral, local_mean, threshold, point): + """ + Check if the integral exceeds the threshold compared to the local mean and + provide feedback on whether the given point is valid or not. + + Parameters + ---------- + integral : float + The calculated integral around the point. + local_mean : float + The local mean value (adjacent integrals). + threshold : float + Threshold value to compare integrals with local mean. + point : float + The harmonic frequency point being evaluated. + + Returns + ------- + valid : bool + True if the integral exceeds the local mean by the threshold, otherwise False. + message : str + A message stating whether the point is valid or not. + """ + valid = integral > (local_mean * threshold) + if valid: + message = f"The point {point} is valid, as its integral exceeds the threshold." + else: + message = f"The point {point} is not valid, as its integral does not exceed the threshold." + return valid, message + + def prepare_harmonics(frequencies, categories, num_harmonics, colors): + """ + Prepare harmonic frequencies and assign colors based on categories. + + Parameters + ---------- + frequencies : list + Base frequencies to generate harmonics. + categories : list + Corresponding categories for the base frequencies. + num_harmonics : list + Number of harmonics for each base frequency. + colors : list + List of colors corresponding to the categories. + + Returns + ------- + points : list + A flat list of harmonic frequencies. + color_mapping : dict + A dictionary mapping each category to its corresponding color. + points_categories : dict + A mapping of categories to their harmonic frequencies. + """ points_categories = {} for idx, (freq, category) in enumerate(zip(frequencies, categories)): points_categories[category] = [freq * (i + 1) for i in range(num_harmonics[idx])] @@ -101,12 +185,9 @@ def prepare_harmonics(frequencies, categories, num_harmonics, colors): return points, color_mapping, points_categories -def plot_power_spectrum_with_integrals(frequency, power, points, delta): +def find_exceeding_points(frequency, power, points, delta, threshold): """ - Create a figure of the power spectrum and calculate integrals around specified points. - - This function generates the plot of the power spectrum and calculates integrals - around specified harmonic points, but it does not color the regions or add vertical lines. + Find the points where the integral exceeds the local mean by a given threshold. Parameters ---------- @@ -115,60 +196,35 @@ def plot_power_spectrum_with_integrals(frequency, power, points, delta): power : np.array An array of power spectral density values. points : list - A list of harmonic frequencies to highlight. + A list of harmonic frequencies to evaluate. delta : float - Half-width of the range for integration around each point. + Half-width of the range for integration around the point. + threshold : float + Threshold value to compare integrals with local mean. Returns ------- - integrals : list - List of calculated integrals for each point. - local_means : list - List of local mean values (adjacent integrals). - fig : matplotlib.figure.Figure - The created figure object with the power plot. - ax : matplotlib.axes.Axes - The axes object for further modifications. + exceeding_points : list + A list of points where the integral exceeds the local mean by the threshold. """ + exceeding_points = [] - fig, ax = plt.subplots() - ax.plot(frequency, power) # Plot power spectrum - - integrals = [] - local_means = [] - for point in points: - # Define indices for the integration window - indices = (frequency >= point - delta) & (frequency <= point + delta) - # Calculate integral around the point - integral = np.trapz(power[indices], frequency[indices]) - integrals.append(integral) - - # Calculate adjacent region integrals for local mean - left_indices = (frequency >= point - 5 * delta) & (frequency < point - delta) - right_indices = (frequency > point + delta) & (frequency <= point + 5 * delta) + # Calculate the integral and local mean for the current point + integral, local_mean = calculate_integral(frequency, power, point, delta) - l_integral = np.trapz(power[left_indices], frequency[left_indices]) - r_integral = np.trapz(power[right_indices], frequency[right_indices]) + # Check if the integral exceeds the threshold + valid, message = valid_integrals(integral, local_mean, threshold, point) - local_mean = np.mean([l_integral, r_integral]) - local_means.append(local_mean) - - ax.set_xlim([0, 1200]) # Set x-axis limit - ax.set_xlabel('Frequency (Hz)') - ax.set_ylabel('Power') - ax.set_title('Power Spectrum with Integrals (Uncolored)') - - return integrals, local_means, fig, ax + if valid: + exceeding_points.append(point) + + return exceeding_points -def highlight_integrals_with_threshold(frequency, power, points, delta, threshold, integrals, local_means, color_mapping, points_categories, fig_orig, ax_orig): +def plot_highlighted_integrals(frequency, power, exceeding_points, delta, threshold, color_mapping, points_categories): """ - Create a new figure by highlighting integrals that exceed the threshold. - - This function generates a new figure with colored shading around points where the integrals exceed - the local mean by a given threshold and adds vertical lines at the boundaries of adjacent regions. - It leaves the original figure unchanged. + Plot the power spectrum and highlight integrals that exceed the threshold. Parameters ---------- @@ -176,75 +232,62 @@ def highlight_integrals_with_threshold(frequency, power, points, delta, threshol An array of frequencies corresponding to the power values. power : np.array An array of power spectral density values. - points : list - A list of harmonic frequencies to highlight. + exceeding_points : list + A list of harmonic frequencies that exceed the threshold. delta : float Half-width of the range for integration around each point. threshold : float Threshold value to compare integrals with local mean. - integrals : list - List of calculated integrals for each point. - local_means : list - List of local mean values (adjacent integrals). color_mapping : dict - A mapping of point categories to colors. + A dictionary mapping each category to its color. points_categories : dict A mapping of categories to lists of points. - fig_orig : matplotlib.figure.Figure - The original figure object (remains unchanged). - ax_orig : matplotlib.axes.Axes - The original axes object (remains unchanged). Returns ------- - fig_new : matplotlib.figure.Figure - The new figure object with color highlights and vertical lines. + fig : matplotlib.figure.Figure + The created figure object with highlighted integrals. """ + fig, ax = plt.subplots() + ax.plot(frequency, power) # Plot power spectrum - # Create a new figure based on the original power spectrum - fig_new, ax_new = plt.subplots() - ax_new.plot(frequency, power) # Plot the same power spectrum - - # Loop through each point and check if the integral exceeds the threshold - for i, point in enumerate(points): - exceeds = integrals[i] > (local_means[i] * threshold) - - if exceeds: + for point in exceeding_points: + integral, local_mean = calculate_integral(frequency, power, point, delta) + valid, _ = valid_integrals(integral, local_mean, threshold, point) + if valid: # Define color based on the category of the point color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray') # Shade the region around the point where the integral was calculated - ax_new.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz') - print(f"Integral around {point:.2f} Hz: {integrals[i]:.5e}") - + ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz') + print(f"Integral around {point:.2f} Hz: {integral:.5e}") + + # Define left and right boundaries of adjacent regions left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]] right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]] # Add vertical dashed lines at the boundaries of the adjacent regions - ax_new.axvline(x=left_boundary, color="k", linestyle="--") - ax_new.axvline(x=right_boundary, color="k", linestyle="--") - - # Update plot legend and return the new figure - ax_new.set_xlim([0, 1200]) - ax_new.set_xlabel('Frequency (Hz)') - ax_new.set_ylabel('Power') - ax_new.set_title('Power Spectrum with Highlighted Integrals') - ax_new.legend() + ax.axvline(x=left_boundary, color="k", linestyle="--") + ax.axvline(x=right_boundary, color="k", linestyle="--") + + + ax.set_xlim([0, 1200]) + ax.set_xlabel('Frequency (Hz)') + ax.set_ylabel('Power') + ax.set_title('Power Spectrum with Highlighted Integrals') + ax.legend() - return fig_new - - - + return fig ### Data retrieval ### -datafolder = "../data" # Geht in der Hierarchie einen Ordern nach oben (..) und dann in den Ordner 'data' +datafolder = "../data" example_file = os.path.join("..", "data", "2024-10-16-ad-invivo-1.nix") dataset = rlx.Dataset(example_file) sams = dataset.repro_runs("SAM") sam = sams[2] -## Daten für Funktionen +## Data for functions df = sam.metadata["RePro-Info"]["settings"]["deltaf"][0][0] stim = sam.stimuli[1] potential, time = stim.trace_data("V-1") @@ -253,29 +296,34 @@ duration = stim.duration dt = stim.trace_info("V-1").sampling_interval -### Anwendung Functionen ### +### Apply Functions to calculate data ### b = binary_spikes(spikes, duration, dt) rate = firing_rate(b, box_width=0.05, dt=dt) frequency, power = powerspectrum(b, dt) -## Important stuff + +### Important stuff ### +## Frequencies eodf = stim.metadata[stim.name]["EODf"][0][0] stimulus_frequency = eodf + df -AM = 50 # Hz -#print(f"EODf: {eodf}, Stimulus Frequency: {stimulus_frequency}, AM: {AM}") - +AM = 50 # Hz frequencies = [AM, eodf, stimulus_frequency] + categories = ["AM", "EODf", "Stimulus frequency"] num_harmonics = [4, 2, 2] colors = ["green", "orange", "red"] + delta = 2.5 threshold = 10 -### -points, color_mapping, points_categories = prepare_harmonics(frequencies, categories, num_harmonics, colors) - -# First, create the power spectrum plot with integrals (without coloring) -integrals, local_means, fig1, ax1 = plot_power_spectrum_with_integrals(frequency, power, points, delta) - -# Then, create a new separate figure where integrals exceeding the threshold are highlighted -fig2 = highlight_integrals_with_threshold(frequency, power, points, delta, threshold, integrals, local_means, color_mapping, points_categories, fig1, ax1) \ No newline at end of file +### Apply functions to make powerspectrum ### +integral, local = calculate_integral(frequency, power, eodf, delta) +valid = valid_integrals(integral, local, threshold, eodf) +points, color, categories = prepare_harmonics(frequencies, categories, num_harmonics, colors) +print(len(points)) +exceeding = find_exceeding_points(frequency, power, points, delta, threshold) +print(len(exceeding)) + +## Plot power spectrum and highlight integrals +fig = plot_highlighted_integrals(frequency, power, points, delta, threshold, color, categories) +plt.show()