Merge branch 'main' of https://whale.am28.uni-tuebingen.de/git/mbergmann/gpgrewe2024
329
code/GP_Code.py
@ -1,329 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Oct 22 15:21:41 2024
|
||||
|
||||
@author: diana
|
||||
"""
|
||||
|
||||
import glob
|
||||
import os
|
||||
import rlxnix as rlx
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import scipy.signal as sig
|
||||
from scipy.integrate import quad
|
||||
|
||||
|
||||
### FUNCTIONS ###
|
||||
def binary_spikes(spike_times, duration, dt):
|
||||
"""Converts the spike times to a binary representation.
|
||||
Zeros when there is no spike, one when there is.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
spike_times : np.array
|
||||
The spike times.
|
||||
duration : float
|
||||
The trial duration.
|
||||
dt : float
|
||||
The temporal resolution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
binary : np.array
|
||||
The binary representation of the spike times.
|
||||
"""
|
||||
binary = np.zeros(int(np.round(duration / dt))) #Vektor, der genauso lang ist wie die stim time
|
||||
spike_indices = np.asarray(np.round(spike_times / dt), dtype=int)
|
||||
binary[spike_indices] = 1
|
||||
return binary
|
||||
|
||||
|
||||
def firing_rate(binary_spikes, box_width, dt=0.000025):
|
||||
"""Calculate the firing rate from binary spike data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
binary_spikes : np.array
|
||||
A binary array representing spike occurrences.
|
||||
box_width : float
|
||||
The width of the box filter in seconds.
|
||||
dt : float, optional
|
||||
The temporal resolution (time step) in seconds. Default is 0.000025 seconds.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rate : np.array
|
||||
An array representing the firing rate at each time step.
|
||||
"""
|
||||
box = np.ones(int(box_width // dt))
|
||||
box /= np.sum(box) * dt # Normalization of box kernel to an integral of 1
|
||||
rate = np.convolve(binary_spikes, box, mode="same")
|
||||
return rate
|
||||
|
||||
|
||||
def powerspectrum(rate, dt):
|
||||
"""Compute the power spectrum of a given firing rate.
|
||||
|
||||
This function calculates the power spectrum using the Welch method.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rate : np.array
|
||||
An array of firing rates.
|
||||
dt : float
|
||||
The temporal resolution (time step) in seconds.
|
||||
|
||||
Returns
|
||||
-------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
"""
|
||||
frequency, power = sig.welch(rate, fs=1/dt, nperseg=2**15, noverlap=2**14)
|
||||
return frequency, power
|
||||
|
||||
|
||||
def calculate_integral(frequency, power, point, delta):
|
||||
"""
|
||||
Calculate the integral around a single specified point.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
point : float
|
||||
The harmonic frequency at which to calculate the integral.
|
||||
delta : float
|
||||
Half-width of the range for integration around the point.
|
||||
|
||||
Returns
|
||||
-------
|
||||
integral : float
|
||||
The calculated integral around the point.
|
||||
local_mean : float
|
||||
The local mean value (adjacent integrals).
|
||||
"""
|
||||
indices = (frequency >= point - delta) & (frequency <= point + delta)
|
||||
integral = np.trapz(power[indices], frequency[indices])
|
||||
|
||||
left_indices = (frequency >= point - 5 * delta) & (frequency < point - delta)
|
||||
right_indices = (frequency > point + delta) & (frequency <= point + 5 * delta)
|
||||
|
||||
l_integral = np.trapz(power[left_indices], frequency[left_indices])
|
||||
r_integral = np.trapz(power[right_indices], frequency[right_indices])
|
||||
|
||||
local_mean = np.mean([l_integral, r_integral])
|
||||
return integral, local_mean
|
||||
|
||||
|
||||
def valid_integrals(integral, local_mean, threshold, point):
|
||||
"""
|
||||
Check if the integral exceeds the threshold compared to the local mean and
|
||||
provide feedback on whether the given point is valid or not.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
integral : float
|
||||
The calculated integral around the point.
|
||||
local_mean : float
|
||||
The local mean value (adjacent integrals).
|
||||
threshold : float
|
||||
Threshold value to compare integrals with local mean.
|
||||
point : float
|
||||
The harmonic frequency point being evaluated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
valid : bool
|
||||
True if the integral exceeds the local mean by the threshold, otherwise False.
|
||||
message : str
|
||||
A message stating whether the point is valid or not.
|
||||
"""
|
||||
valid = integral > (local_mean * threshold)
|
||||
if valid:
|
||||
message = f"The point {point} is valid, as its integral exceeds the threshold."
|
||||
else:
|
||||
message = f"The point {point} is not valid, as its integral does not exceed the threshold."
|
||||
return valid, message
|
||||
|
||||
|
||||
def prepare_harmonics(frequencies, categories, num_harmonics, colors):
|
||||
"""
|
||||
Prepare harmonic frequencies and assign colors based on categories.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequencies : list
|
||||
Base frequencies to generate harmonics.
|
||||
categories : list
|
||||
Corresponding categories for the base frequencies.
|
||||
num_harmonics : list
|
||||
Number of harmonics for each base frequency.
|
||||
colors : list
|
||||
List of colors corresponding to the categories.
|
||||
|
||||
Returns
|
||||
-------
|
||||
points : list
|
||||
A flat list of harmonic frequencies.
|
||||
color_mapping : dict
|
||||
A dictionary mapping each category to its corresponding color.
|
||||
points_categories : dict
|
||||
A mapping of categories to their harmonic frequencies.
|
||||
"""
|
||||
points_categories = {}
|
||||
for idx, (freq, category) in enumerate(zip(frequencies, categories)):
|
||||
points_categories[category] = [freq * (i + 1) for i in range(num_harmonics[idx])]
|
||||
|
||||
points = [p for harmonics in points_categories.values() for p in harmonics]
|
||||
color_mapping = {category: colors[idx] for idx, category in enumerate(categories)}
|
||||
|
||||
return points, color_mapping, points_categories
|
||||
|
||||
|
||||
def find_exceeding_points(frequency, power, points, delta, threshold):
|
||||
"""
|
||||
Find the points where the integral exceeds the local mean by a given threshold.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
points : list
|
||||
A list of harmonic frequencies to evaluate.
|
||||
delta : float
|
||||
Half-width of the range for integration around the point.
|
||||
threshold : float
|
||||
Threshold value to compare integrals with local mean.
|
||||
|
||||
Returns
|
||||
-------
|
||||
exceeding_points : list
|
||||
A list of points where the integral exceeds the local mean by the threshold.
|
||||
"""
|
||||
exceeding_points = []
|
||||
|
||||
for point in points:
|
||||
# Calculate the integral and local mean for the current point
|
||||
integral, local_mean = calculate_integral(frequency, power, point, delta)
|
||||
|
||||
# Check if the integral exceeds the threshold
|
||||
valid, message = valid_integrals(integral, local_mean, threshold, point)
|
||||
|
||||
if valid:
|
||||
exceeding_points.append(point)
|
||||
|
||||
return exceeding_points
|
||||
|
||||
|
||||
def plot_highlighted_integrals(frequency, power, exceeding_points, delta, threshold, color_mapping, points_categories):
|
||||
"""
|
||||
Plot the power spectrum and highlight integrals that exceed the threshold.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
exceeding_points : list
|
||||
A list of harmonic frequencies that exceed the threshold.
|
||||
delta : float
|
||||
Half-width of the range for integration around each point.
|
||||
threshold : float
|
||||
Threshold value to compare integrals with local mean.
|
||||
color_mapping : dict
|
||||
A dictionary mapping each category to its color.
|
||||
points_categories : dict
|
||||
A mapping of categories to lists of points.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fig : matplotlib.figure.Figure
|
||||
The created figure object with highlighted integrals.
|
||||
"""
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(frequency, power) # Plot power spectrum
|
||||
|
||||
for point in exceeding_points:
|
||||
integral, local_mean = calculate_integral(frequency, power, point, delta)
|
||||
valid, _ = valid_integrals(integral, local_mean, threshold, point)
|
||||
if valid:
|
||||
# Define color based on the category of the point
|
||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||
# Shade the region around the point where the integral was calculated
|
||||
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
||||
print(f"Integral around {point:.2f} Hz: {integral:.5e}")
|
||||
|
||||
|
||||
# Define left and right boundaries of adjacent regions
|
||||
left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]]
|
||||
right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]]
|
||||
|
||||
# Add vertical dashed lines at the boundaries of the adjacent regions
|
||||
ax.axvline(x=left_boundary, color="k", linestyle="--")
|
||||
ax.axvline(x=right_boundary, color="k", linestyle="--")
|
||||
|
||||
|
||||
ax.set_xlim([0, 1200])
|
||||
ax.set_xlabel('Frequency (Hz)')
|
||||
ax.set_ylabel('Power')
|
||||
ax.set_title('Power Spectrum with Highlighted Integrals')
|
||||
ax.legend()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
### Data retrieval ###
|
||||
datafolder = "../data"
|
||||
example_file = os.path.join("..", "data", "2024-10-16-ad-invivo-1.nix")
|
||||
dataset = rlx.Dataset(example_file)
|
||||
sams = dataset.repro_runs("SAM")
|
||||
sam = sams[2]
|
||||
|
||||
## Data for functions
|
||||
df = sam.metadata["RePro-Info"]["settings"]["deltaf"][0][0]
|
||||
stim = sam.stimuli[1]
|
||||
potential, time = stim.trace_data("V-1")
|
||||
spikes, _ = stim.trace_data("Spikes-1")
|
||||
duration = stim.duration
|
||||
dt = stim.trace_info("V-1").sampling_interval
|
||||
|
||||
|
||||
### Apply Functions to calculate data ###
|
||||
b = binary_spikes(spikes, duration, dt)
|
||||
rate = firing_rate(b, box_width=0.05, dt=dt)
|
||||
frequency, power = powerspectrum(b, dt)
|
||||
|
||||
|
||||
### Important stuff ###
|
||||
## Frequencies
|
||||
eodf = stim.metadata[stim.name]["EODf"][0][0]
|
||||
stimulus_frequency = eodf + df
|
||||
AM = 50 # Hz
|
||||
frequencies = [AM, eodf, stimulus_frequency]
|
||||
|
||||
categories = ["AM", "EODf", "Stimulus frequency"]
|
||||
num_harmonics = [4, 2, 2]
|
||||
colors = ["green", "orange", "red"]
|
||||
|
||||
delta = 2.5
|
||||
threshold = 10
|
||||
|
||||
### Apply functions to make powerspectrum ###
|
||||
integral, local = calculate_integral(frequency, power, eodf, delta)
|
||||
valid = valid_integrals(integral, local, threshold, eodf)
|
||||
points, color, categories = prepare_harmonics(frequencies, categories, num_harmonics, colors)
|
||||
print(len(points))
|
||||
exceeding = find_exceeding_points(frequency, power, points, delta, threshold)
|
||||
print(len(exceeding))
|
||||
|
||||
## Plot power spectrum and highlight integrals
|
||||
fig = plot_highlighted_integrals(frequency, power, points, delta, threshold, color, categories)
|
||||
plt.show()
|
162
code/am_plots_modularized.py
Normal file
@ -0,0 +1,162 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import os
|
||||
import glob
|
||||
import rlxnix as rlx
|
||||
from useful_functions import sam_data, sam_spectrum, calculate_integral, contrast_sorting, remove_poor
|
||||
from tqdm import tqdm # Import tqdm for the progress bar
|
||||
|
||||
|
||||
def load_files(file_path_pattern):
|
||||
"""Load all files matching the pattern and remove poor quality files."""
|
||||
all_files = glob.glob(file_path_pattern)
|
||||
good_files = remove_poor(all_files)
|
||||
return good_files
|
||||
|
||||
|
||||
def process_sam_data(sam):
|
||||
"""Process data for a single SAM and return necessary frequencies and powers."""
|
||||
_, _, _, _, eodf, nyquist, stim_freq = sam_data(sam)
|
||||
|
||||
# Skip if stim_freq is NaN
|
||||
if np.isnan(stim_freq):
|
||||
return None
|
||||
|
||||
# Get power spectrum and frequency index for 1/2 EODf
|
||||
freq, power = sam_spectrum(sam)
|
||||
nyquist_idx = np.searchsorted(freq, nyquist)
|
||||
|
||||
# Get frequencies and powers before 1/2 EODf
|
||||
freqs_before_half_eodf = freq[:nyquist_idx]
|
||||
powers_before_half_eodf = power[:nyquist_idx]
|
||||
|
||||
# Get peak frequency and power
|
||||
am_peak_f = freqs_before_half_eodf[np.argmax(powers_before_half_eodf)]
|
||||
_, _, peak_power = calculate_integral(freq, power, am_peak_f)
|
||||
|
||||
return stim_freq, am_peak_f, peak_power
|
||||
|
||||
|
||||
def plot_contrast_data(contrast_dict, file_tag, axs1, axs2):
|
||||
"""Loop over all contrasts and plot AM Frequency and AM Power."""
|
||||
for idx, contrast in enumerate(contrast_dict): # contrasts = keys of dict
|
||||
ax1 = axs1[idx] # First figure (AM Frequency vs Stimulus Frequency)
|
||||
ax2 = axs2[idx] # Second figure (AM Power vs Stimulus Frequency)
|
||||
contrast_sams = contrast_dict[contrast]
|
||||
|
||||
# store all stim_freq and peak_power/nyquist_freq for this contrast
|
||||
stim_freqs = []
|
||||
am_freqs = []
|
||||
peak_powers = []
|
||||
|
||||
# loop over all sams of one contrast
|
||||
for sam in contrast_sams:
|
||||
processed_data = process_sam_data(sam)
|
||||
if processed_data is None:
|
||||
continue
|
||||
stim_freq, am_peak_f, peak_power = processed_data
|
||||
stim_freqs.append(stim_freq)
|
||||
am_freqs.append(am_peak_f)
|
||||
peak_powers.append(peak_power)
|
||||
|
||||
# Plot in the first figure (AM Frequency vs Stimulus Frequency)
|
||||
ax1.plot(stim_freqs, am_freqs, '-', label=file_tag)
|
||||
ax1.set_title(f'Contrast {contrast}%')
|
||||
ax1.grid(True)
|
||||
ax1.legend(loc='upper right')
|
||||
|
||||
# Plot in the second figure (AM Power vs Stimulus Frequency)
|
||||
ax2.plot(stim_freqs, peak_powers, '-', label=file_tag)
|
||||
ax2.set_title(f'Contrast {contrast}%')
|
||||
ax2.grid(True)
|
||||
ax2.legend(loc='upper right')
|
||||
|
||||
|
||||
def process_file(file, axs1, axs2):
|
||||
"""Process a single file: extract SAMs and plot data for each contrast."""
|
||||
dataset = rlx.Dataset(file)
|
||||
sam_list = dataset.repro_runs('SAM')
|
||||
|
||||
# Extract the file tag (first part of the filename) for the legend
|
||||
file_tag = '-'.join(os.path.basename(file).split('-')[0:4])
|
||||
|
||||
# Sort SAMs by contrast
|
||||
contrast_dict = contrast_sorting(sam_list)
|
||||
|
||||
# Plot the data for each contrast
|
||||
plot_contrast_data(contrast_dict, file_tag, axs1, axs2)
|
||||
|
||||
|
||||
def loop_over_files(files, axs1, axs2):
|
||||
"""Loop over all good files, process each file, and plot the data."""
|
||||
for file in tqdm(files, desc="Processing files"):
|
||||
process_file(file, axs1, axs2)
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
# Load files
|
||||
file_path_pattern = '../data/16-10-24/*.nix'
|
||||
good_files = load_files(file_path_pattern)
|
||||
|
||||
# Initialize figures
|
||||
fig1, axs1 = plt.subplots(3, 1, constrained_layout=True, sharex=True) # For AM Frequency vs Stimulus Frequency
|
||||
fig2, axs2 = plt.subplots(3, 1, constrained_layout=True, sharex=True) # For AM Power vs Stimulus Frequency
|
||||
|
||||
# Loop over files and process data
|
||||
loop_over_files(good_files, axs1, axs2)
|
||||
|
||||
# Add labels to figures
|
||||
fig1.supxlabel('Stimulus Frequency (df + EODf) [Hz]')
|
||||
fig1.supylabel('AM Frequency [Hz]')
|
||||
fig2.supxlabel('Stimulus Frequency (df + EODf) [Hz]')
|
||||
fig2.supylabel('AM Power')
|
||||
|
||||
# Show plots
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# Run the main function
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
'''
|
||||
Function that gets eodf and 1/2 eodf per contrast:
|
||||
|
||||
def calculate_mean_eodf(sams):
|
||||
"""
|
||||
Calculate mean EODf and mean 1/2 EODf for the given SAM data.
|
||||
|
||||
Args:
|
||||
sams (list): List of SAM objects.
|
||||
|
||||
Returns:
|
||||
mean_eodf (float): Mean EODf across all SAMs.
|
||||
mean_half_eodf (float): Mean 1/2 EODf (Nyquist frequency) across all SAMs.
|
||||
"""
|
||||
eodfs = []
|
||||
nyquists = []
|
||||
|
||||
for sam in sams:
|
||||
_, _, _, _, eodf, nyquist, _ = sam_data(sam)
|
||||
|
||||
# Add to list only if valid
|
||||
if not np.isnan(eodf):
|
||||
eodfs.append(eodf)
|
||||
nyquists.append(nyquist)
|
||||
|
||||
# Calculate mean EODf and 1/2 EODf
|
||||
mean_eodf = np.mean(eodfs)
|
||||
mean_half_eodf = np.mean(nyquists)
|
||||
|
||||
return mean_eodf, mean_half_eodf
|
||||
'''
|
||||
|
||||
# TODO:
|
||||
# display eodf values in plot for one cell, one intensity - integrate function for this
|
||||
# lowpass with gaussian kernel for amplitude plot(0.5 sigma in frequency spectrum (dont filter too narrowly))
|
||||
# fix legends (only for the cells that are being displayed)
|
||||
# save figures
|
||||
# plot remaining 3 plots, make 1 function for every option and put that in main code
|
||||
# push files to git
|
96
code/am_plots_oneintensityandcell.py
Normal file
@ -0,0 +1,96 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import os
|
||||
import rlxnix as rlx
|
||||
from useful_functions import sam_data, sam_spectrum, calculate_integral, contrast_sorting
|
||||
|
||||
# close all open plots
|
||||
plt.close('all')
|
||||
|
||||
def plot_am_vs_frequency_single_intensity(file, contrast=20):
|
||||
"""
|
||||
Plots AM Power vs Stimulus Frequency and Nyquist Frequency vs Stimulus Frequency for
|
||||
one intensity and one cell (file).
|
||||
|
||||
Parameters:
|
||||
file (str): Path to the file (one cell).
|
||||
intensity (int): The intensity level (contrast) to filter by.
|
||||
"""
|
||||
# Load the dataset for the given file
|
||||
dataset = rlx.Dataset(file)
|
||||
|
||||
# Get SAMs for the whole recording
|
||||
sam_list = dataset.repro_runs('SAM')
|
||||
|
||||
# Extract the file tag (first part of the filename) for the legend
|
||||
file_tag = '-'.join(os.path.basename(file).split('-')[0:4])
|
||||
|
||||
# Sort SAMs by contrast
|
||||
contrast_dict = contrast_sorting(sam_list)
|
||||
|
||||
# Get the SAMs for 20% contrast
|
||||
sams = contrast_dict[contrast]
|
||||
|
||||
# Create a figure with 1 row and 2 columns
|
||||
fig, axs = plt.subplots(2, 1, layout='constrained')
|
||||
|
||||
# Store all stim_freq, peak_power, and am_freq for the given contrast
|
||||
stim_freqs = []
|
||||
peak_powers = []
|
||||
am_freqs = []
|
||||
|
||||
# Loop over all SAMs of the specified contrast
|
||||
for sam in sams:
|
||||
|
||||
# Get stim_freq for each SAM
|
||||
_, _, _, _, eodf, nyquist, stim_freq = sam_data(sam)
|
||||
|
||||
# Skip over empty SAMs
|
||||
if np.isnan(stim_freq):
|
||||
continue
|
||||
|
||||
# Get power spectrum from one SAM
|
||||
freq, power = sam_spectrum(sam)
|
||||
|
||||
# get index of 1/2 eodf frequency
|
||||
nyquist_idx = np.searchsorted(freq, nyquist)
|
||||
|
||||
# get frequencies until 1/2 eodf and powers for those frequencies
|
||||
freqs_before_half_eodf = freq[:nyquist_idx]
|
||||
powers_before_half_eodf = power[:nyquist_idx]
|
||||
|
||||
# Get the frequency of the highest peak before 1/2 EODf
|
||||
am_peak_f = freqs_before_half_eodf[np.argmax(powers_before_half_eodf)]
|
||||
|
||||
# Get the power of the highest peak before 1/2 EODf
|
||||
_, _, peak_power = calculate_integral(freq, power, am_peak_f)
|
||||
|
||||
# Collect data for plotting
|
||||
stim_freqs.append(stim_freq)
|
||||
peak_powers.append(peak_power)
|
||||
am_freqs.append(am_peak_f)
|
||||
|
||||
# Plot AM Power vs Stimulus Frequency (first column)
|
||||
ax = axs[0]
|
||||
ax.plot(stim_freqs, am_freqs, '-')
|
||||
ax.set_ylabel('AM Frequency [Hz]')
|
||||
ax.grid(True)
|
||||
|
||||
# Plot AM Frequency vs Stimulus Frequency (second column)
|
||||
ax = axs[1]
|
||||
ax.plot(stim_freqs, peak_powers, '-')
|
||||
ax.set_ylabel('AM Power')
|
||||
ax.grid(True)
|
||||
|
||||
# Figure settings
|
||||
fig.suptitle(f"Cell: {file_tag}, Contrast: {contrast}%")
|
||||
fig.supxlabel("Stimulus Frequency (df + EODf) [Hz]")
|
||||
plt.show()
|
||||
|
||||
|
||||
# Call function
|
||||
file = '../data/16-10-24/2024-10-16-ad-invivo-1.nix'
|
||||
|
||||
# Call the function to plot the data for one intensity and one cell
|
||||
plot_am_vs_frequency_single_intensity(file)
|
||||
|
@ -1,154 +0,0 @@
|
||||
import rlxnix as rlx
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
from scipy.signal import welch
|
||||
|
||||
# close all currently open figures
|
||||
plt.close('all')
|
||||
|
||||
'''FUNCTIONS'''
|
||||
def plot_vt_spikes(t, v, spike_t):
|
||||
fig = plt.figure(figsize=(5, 2.5))
|
||||
# alternative to ax = axs[0]
|
||||
ax = fig.add_subplot()
|
||||
# plot vt diagram
|
||||
ax.plot(t[t<0.1], v[t<0.1])
|
||||
# plot spikes into vt diagram, at max V
|
||||
ax.scatter(spike_t[spike_t<0.1], np.ones_like(spike_t[spike_t<0.1]) * np.max(v))
|
||||
plt.show()
|
||||
|
||||
def scatter_plot(colormap, stimuli_list, stimulus_count):
|
||||
'''plot scatter plot for one sam with all 3 stims'''
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot()
|
||||
|
||||
ax.eventplot(stimuli_list, colors=colormap)
|
||||
ax.set_xlabel('Spike Times [ms]')
|
||||
ax.set_ylabel('Loop #')
|
||||
ax.set_yticks(range(stimulus_count))
|
||||
ax.set_title('Spikes of SAM 3')
|
||||
plt.show()
|
||||
|
||||
# create binary array with ones for spike times
|
||||
def binary_spikes(spike_times, duration , dt):
|
||||
'''Converts spike times to binary representation
|
||||
Params
|
||||
------
|
||||
spike_times: np.array
|
||||
spike times
|
||||
duration: float
|
||||
trial duration
|
||||
dt: float
|
||||
temporal resolution
|
||||
|
||||
Returns
|
||||
--------
|
||||
binary: np.array
|
||||
The binary representation of the spike times
|
||||
'''
|
||||
binary = np.zeros(int(duration//dt)) # // is truncated division, returns number w/o decimals, same as np.round
|
||||
spike_indices = np.asarray(np.round(spike_times//dt), dtype=int)
|
||||
binary[spike_indices] = 1
|
||||
return binary
|
||||
|
||||
# function to plot psth
|
||||
def firing_rates(binary_spikes, box_width=0.01, dt=0.000025):
|
||||
box = np.ones(int(box_width // dt))
|
||||
box /= np.sum(box * dt) # normalize box kernel w interal of 1
|
||||
rate = np.convolve(binary_spikes, box, mode='same')
|
||||
return rate
|
||||
|
||||
def power_spectrum(rate, dt):
|
||||
f, p = welch(rate, fs = 1./dt, nperseg=2**16, noverlap=2**15)
|
||||
# algorithm makes rounding mistakes, we want to calc many spectra and take mean of those
|
||||
# nperseg: length of segments in # datapoints
|
||||
# noverlap: # datapoints that overlap in segments
|
||||
return f, p
|
||||
|
||||
def power_spectrum_plot(f, p):
|
||||
# plot power spectrum
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot()
|
||||
ax.plot(freq, power)
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [1/Hz]')
|
||||
ax.set_xlim(0, 1000)
|
||||
plt.show()
|
||||
|
||||
'''IMPORT DATA'''
|
||||
datafolder = '../data' #./ wo ich gerade bin; ../ eine ebene höher; ../../ zwei ebenen höher
|
||||
|
||||
example_file = os.path.join('..', 'data', '2024-10-16-ac-invivo-1.nix')
|
||||
|
||||
'''EXTRACT DATA'''
|
||||
dataset = rlx.Dataset(example_file)
|
||||
|
||||
# get sams
|
||||
sams = dataset.repro_runs('SAM')
|
||||
sam = sams[2]
|
||||
|
||||
# get potetial over time (vt curve)
|
||||
potential, time = sam.trace_data('V-1')
|
||||
|
||||
# get spike times
|
||||
spike_times, _ = sam.trace_data('Spikes-1')
|
||||
|
||||
# get stim count
|
||||
stim_count = sam.stimulus_count
|
||||
|
||||
# extract spike times of all 3 loops of current sam
|
||||
stimuli = []
|
||||
for i in range(stim_count):
|
||||
# get stim i from sam
|
||||
stim = sam.stimuli[i]
|
||||
potential_stim, time_stim = stim.trace_data('V-1')
|
||||
# get spike_times
|
||||
spike_times_stim, _ = stim.trace_data('Spikes-1')
|
||||
stimuli.append(spike_times_stim)
|
||||
|
||||
eodf = stim.metadata[stim.name]['EODF'][0][0]
|
||||
df = stim.metadata['RePro-Info']['settings']['deltaf'][0][0]
|
||||
stimulus_freq = df + eodf
|
||||
|
||||
'''PLOT'''
|
||||
# create colormap
|
||||
colors = plt.cm.prism(np.linspace(0, 1, stim_count))
|
||||
|
||||
# timeline of whole rec
|
||||
dataset.plot_timeline()
|
||||
|
||||
# voltage and spikes of current sam
|
||||
plot_vt_spikes(time, potential, spike_times)
|
||||
|
||||
# spike times of all loops
|
||||
scatter_plot(colors, stimuli, stim_count)
|
||||
|
||||
|
||||
'''POWER SPECTRUM'''
|
||||
# define variables for binary spikes function
|
||||
spikes, _ = stim.trace_data('Spikes-1')
|
||||
ti = stim.trace_info('V-1')
|
||||
dt = ti.sampling_interval
|
||||
duration = stim.duration
|
||||
|
||||
### spectrum
|
||||
# vector with binary values for wholes length of stim
|
||||
binary = binary_spikes(spikes, duration, dt)
|
||||
|
||||
# calculate firing rate
|
||||
rate = firing_rates(binary, 0.01, dt) # box width of 10 ms
|
||||
|
||||
# plot psth or whatever
|
||||
# plt.plot(time_stim, rate)
|
||||
# plt.show()
|
||||
|
||||
freq, power = power_spectrum(binary, dt)
|
||||
|
||||
power_spectrum_plot(freq, power)
|
||||
|
||||
|
||||
### TODO:
|
||||
# then loop over sams/dfs, all stims, intensities
|
||||
# when does stim start in eodf/ at which phase and how does that influence our signal --> alignment problem: egal wenn wir spectren haben
|
||||
# we want to see peaks at phase locking to own and stim frequency, and at amp modulation frequency
|
@ -1,26 +1,45 @@
|
||||
import glob
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import os
|
||||
import rlxnix as rlx
|
||||
import scipy as sp
|
||||
import time
|
||||
import useful_functions as f
|
||||
from matplotlib.lines import Line2D
|
||||
from tqdm import tqdm
|
||||
|
||||
# tatsächliche Power der peaks benutzen
|
||||
|
||||
|
||||
|
||||
# plot the tuning curves for all cells y/n
|
||||
single_plots = True
|
||||
|
||||
# all files we want to use
|
||||
files = glob.glob("../data/2024-10-*.nix")
|
||||
|
||||
#EODf file for either day
|
||||
eodf_file_w = glob.glob('../data/EOD_only/*-16*.nix')[0]
|
||||
eodf_file_m = glob.glob('../data/EOD_only/*-21*.nix')[0]
|
||||
|
||||
# get only the good and fair filepaths
|
||||
new_files = f.remove_poor(files)
|
||||
|
||||
#get the filenames as labels for plotting
|
||||
labels = [os.path.splitext(os.path.basename(file))[0] for file in new_files]
|
||||
|
||||
# dict for all the different contrasts
|
||||
contrast_files = {20 : {'power' :[], 'freq' : []},
|
||||
10 : {'power' :[], 'freq' : []},
|
||||
5 : {'power' :[], 'freq' : []}}
|
||||
norm_contrast_files = {20 : {'power' :[], 'freq' : []},
|
||||
10 : {'power' :[], 'freq' : []},
|
||||
5 : {'power' :[], 'freq' : []}}
|
||||
|
||||
# loop over all the good files
|
||||
for file in new_files:
|
||||
|
||||
for u, file in tqdm(enumerate(new_files), total = len(new_files)):
|
||||
#use correct eodf file
|
||||
if "-16" in file:
|
||||
orig_eodf = f.true_eodf(eodf_file_w)
|
||||
else:
|
||||
orig_eodf = f.true_eodf(eodf_file_m)
|
||||
|
||||
#define lists
|
||||
contrast_frequencies = []
|
||||
contrast_powers = []
|
||||
# load a file
|
||||
@ -30,79 +49,146 @@ for file in new_files:
|
||||
# get arrays for frequnecies and power
|
||||
stim_frequencies = np.zeros(len(sams))
|
||||
peak_powers = np.zeros_like(stim_frequencies)
|
||||
# loop over all sams
|
||||
# dictionary for the contrasts
|
||||
contrast_sams = {20 : [],
|
||||
10 : [],
|
||||
5 : []}
|
||||
# loop over all sams
|
||||
for sam in sams:
|
||||
# get the contrast
|
||||
avg_dur, contrast, _, _, _, _, _ = f.sam_data(sam)
|
||||
# check for valid trails
|
||||
if np.isnan(contrast):
|
||||
continue
|
||||
elif sam.stimulus_count < 3: #aborted trials
|
||||
continue
|
||||
elif avg_dur < 1.7:
|
||||
continue
|
||||
else:
|
||||
contrast = int(contrast) # get integer of contrast
|
||||
# sort them accordingly
|
||||
if contrast == 20:
|
||||
contrast_sams[20].append(sam)
|
||||
if contrast == 10:
|
||||
contrast_sams[10].append(sam)
|
||||
if contrast == 5:
|
||||
contrast_sams[5].append(sam)
|
||||
else:
|
||||
continue
|
||||
contrast_sams = f.contrast_sorting(sams)
|
||||
|
||||
eodfs = []
|
||||
# loop over the contrasts
|
||||
for key in contrast_sams:
|
||||
stim_frequencies = np.zeros(len(contrast_sams[key]))
|
||||
norm_stim_frequencies = np.zeros_like(stim_frequencies)
|
||||
peak_powers = np.zeros_like(stim_frequencies)
|
||||
|
||||
for i, sam in enumerate(contrast_sams[key]):
|
||||
# get stimulus frequency and stimuli
|
||||
_, _, _, _, _, _, stim_frequency = f.sam_data(sam)
|
||||
stimuli = sam.stimuli
|
||||
# lists for the power spectra
|
||||
frequencies = []
|
||||
powers = []
|
||||
# loop over the stimuli
|
||||
for stimulus in stimuli:
|
||||
# get the powerspectrum for each stimuli
|
||||
frequency, power = f.power_spectrum(stimulus)
|
||||
# append the power spectrum data
|
||||
frequencies.append(frequency)
|
||||
powers.append(power)
|
||||
#average over the stimuli
|
||||
sam_frequency = np.mean(frequencies, axis = 0)
|
||||
sam_power = np.mean(powers, axis = 0)
|
||||
_, _, _, _, eodf, _, stim_frequency = f.sam_data(sam)
|
||||
sam_frequency, sam_power = f.sam_spectrum(sam)
|
||||
# detect peaks
|
||||
integral, surroundings, peak_power = f.calculate_integral(sam_frequency,
|
||||
_, _, peak_powers[i] = f.calculate_integral(sam_frequency,
|
||||
sam_power, stim_frequency)
|
||||
|
||||
peak_powers[i] = peak_power
|
||||
# add the current stimulus frequency
|
||||
stim_frequencies[i] = stim_frequency
|
||||
|
||||
norm_stim_frequencies[i] = stim_frequency - orig_eodf
|
||||
eodfs.append(eodf)
|
||||
# replae zeros with NaN
|
||||
peak_powers = np.where(peak_powers == 0, np.nan, peak_powers)
|
||||
|
||||
contrast_frequencies.append(stim_frequencies)
|
||||
contrast_powers.append(peak_powers)
|
||||
|
||||
fig, ax = plt.subplots(layout = 'constrained')
|
||||
ax.plot(contrast_frequencies[0], contrast_powers[0])
|
||||
ax.plot(contrast_frequencies[1], contrast_powers[1])
|
||||
ax.plot(contrast_frequencies[2], contrast_powers[2])
|
||||
ax.set_xlabel('stimulus frequency [Hz]')
|
||||
ax.set_ylabel(r' power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]')
|
||||
ax.set_title(f"{file}")
|
||||
|
||||
if key == 20:
|
||||
contrast_files[20]['freq'].append(stim_frequencies)
|
||||
contrast_files[20]['power'].append(peak_powers)
|
||||
norm_contrast_files[20]['freq'].append(norm_stim_frequencies)
|
||||
norm_contrast_files[20]['power'].append(peak_powers)
|
||||
elif key == 10:
|
||||
contrast_files[10]['freq'].append(stim_frequencies)
|
||||
contrast_files[10]['power'].append(peak_powers)
|
||||
norm_contrast_files[10]['freq'].append(norm_stim_frequencies)
|
||||
norm_contrast_files[10]['power'].append(peak_powers)
|
||||
else:
|
||||
contrast_files[5]['freq'].append(stim_frequencies)
|
||||
contrast_files[5]['power'].append(peak_powers)
|
||||
norm_contrast_files[5]['freq'].append(norm_stim_frequencies)
|
||||
norm_contrast_files[5]['power'].append(peak_powers)
|
||||
|
||||
curr_eodf = np.mean(eodfs)
|
||||
if single_plots == True:
|
||||
# one cell with all contrasts in one subplot
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(contrast_frequencies[0], contrast_powers[0])
|
||||
ax.plot(contrast_frequencies[1], contrast_powers[1])
|
||||
if contrast_frequencies and contrast_frequencies[-1].size == 0:
|
||||
if contrast_frequencies and contrast_frequencies[-2].size == 0:
|
||||
ax.set_xlim(0,2000)
|
||||
else:
|
||||
ax.set_xlim(0,np.max(contrast_frequencies[-2]))
|
||||
else:
|
||||
ax.plot(contrast_frequencies[2], contrast_powers[2])
|
||||
ax.set_xlim(0,np.max(contrast_frequencies[-1]))
|
||||
ax.axvline(orig_eodf, color = 'black',linestyle = 'dashed', alpha = 0.8)
|
||||
ax.axvline(2*curr_eodf, color = 'black', linestyle = 'dotted', alpha = 0.8)
|
||||
ax.set_ylim(0, 0.00014)
|
||||
ax.set_xlabel('stimulus frequency [Hz]')
|
||||
ax.set_ylabel(r' power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]')
|
||||
ax.set_title(f"{file}")
|
||||
fig.legend(labels = ['20 % contrast', '10 % contrast','5 % contrast','EODf of awake fish', '1st harmonic of current EODf' ], loc = 'lower center', ncol = 3)
|
||||
plt.tight_layout(rect=[0, 0.06, 1, 1])
|
||||
plt.savefig(f'../results/tuning_curve{labels[u]}.svg')
|
||||
|
||||
#one cell with the contrasts in different subplots
|
||||
fig, axs = plt.subplots(1, 3, figsize = [10,6], sharex = True, sharey = True)
|
||||
for p, key in enumerate(contrast_files):
|
||||
ax = axs[p]
|
||||
ax.plot(contrast_files[key]['freq'][-1],contrast_files[key]['power'][-1])
|
||||
ax.set_title(f"{key}")
|
||||
ax.axvline(orig_eodf, color = 'black',linestyle = 'dashed')
|
||||
ax.axvline(2*curr_eodf, color = 'darkblue', linestyle = 'dotted', alpha = 0.8)
|
||||
if p == 0:
|
||||
ax.set_ylabel(r'power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]', fontsize=12)
|
||||
fig.supxlabel('stimulus frequency [Hz]', fontsize=12)
|
||||
fig.suptitle(f'{labels[u]}')
|
||||
fig.legend(labels = ['power of stimulus peak', 'EODf of awake fish','1st harmonic of current EODf'], loc = 'lower center', bbox_to_anchor=(0.5, 0.05), ncol = 3)
|
||||
plt.tight_layout(rect=[0, 0.06, 1, 1])
|
||||
plt.savefig(f'../results/contrast_tuning{labels[u]}.svg')
|
||||
|
||||
cmap = plt.get_cmap('viridis')
|
||||
colors = cmap(np.linspace(0, 1, len(new_files)))
|
||||
plt.close('all')
|
||||
if len(new_files) < 10:
|
||||
lines = []
|
||||
labels_legend = []
|
||||
fig, axs = plt.subplots(1, 3, figsize = [10,6], sharex = True, sharey = True)
|
||||
for p, key in enumerate(contrast_files):
|
||||
ax = axs[p]
|
||||
for i in range(len(contrast_files[key]['power'])):
|
||||
line, = ax.plot(contrast_files[key]['freq'][i],contrast_files[key]['power'][i], label = labels[i], color = colors[i])
|
||||
ax.set_title(f"{key}")
|
||||
ax.axvline(orig_eodf, color = 'black',linestyle = 'dashed')
|
||||
if p == 0:
|
||||
lines.append(line)
|
||||
labels_legend.append(labels[i])
|
||||
fig.supxlabel('stimulus frequency [Hz]', fontsize=12)
|
||||
fig.supylabel(r'power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]', fontsize=12)
|
||||
|
||||
# Create a single legend beneath the plots with 3 columns
|
||||
lines.append(Line2D([0], [0], color='black', linestyle='--')) # Custom line for the legend
|
||||
labels_legend.append("Awake fish EODf") # Custom label
|
||||
fig.legend(lines, labels_legend, loc='upper center', ncol=3, fontsize=10)
|
||||
plt.tight_layout(rect=[0, 0, 1, 0.85]) # Adjust layout to make space for the legend
|
||||
if "-16" in new_files[-1]:
|
||||
plt.savefig('../results/tuning_curves_10_16.svg')
|
||||
elif "-21" in new_files[0]:
|
||||
plt.savefig('../results/tuning_curves_10_21.svg')
|
||||
else:
|
||||
for o in range(2):
|
||||
lines = []
|
||||
labels_legend = []
|
||||
fig, axs = plt.subplots(1, 3, figsize = [10,6], sharex = True, sharey = True)
|
||||
for p, key in enumerate(norm_contrast_files):
|
||||
ax = axs[p]
|
||||
for i in range(len(norm_contrast_files[key]['power'])):
|
||||
line, = ax.plot(norm_contrast_files[key]['freq'][i],norm_contrast_files[key]['power'][i], label = labels[i], color = colors[i])
|
||||
ax.set_title(f"{key}")
|
||||
ax.axvline(0, color = 'black',linestyle = 'dashed')
|
||||
if p == 0:
|
||||
lines.append(line)
|
||||
labels_legend.append(labels[i])
|
||||
fig.supylabel(r'power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]', fontsize=12)
|
||||
|
||||
# Create a single legend beneath the plots with 3 columns
|
||||
lines.append(Line2D([0], [0], color='black', linestyle='--')) # Custom line for the legend
|
||||
labels_legend.append("Awake fish EODf") # Custom label
|
||||
fig.legend(lines, labels_legend, loc='upper center', ncol=3, fontsize=10)
|
||||
plt.tight_layout(rect=[0, 0, 1, 0.82]) # Adjust layout to make space for the legend
|
||||
if o == 0:
|
||||
ax.set_xlim(-600, 2100)
|
||||
fig.supxlabel('stimulus frequency [Hz]', fontsize=12)
|
||||
plt.savefig('../results/tuning_curves_norm.svg')
|
||||
else:
|
||||
ax.set_xlim(-600, 600)
|
||||
fig.supxlabel(' relative stimulus frequency [Hz]', fontsize=12)
|
||||
plt.savefig('../results/tuning_curves_norm_zoom.svg')
|
||||
#plt.close('all')
|
||||
|
||||
|
||||
|
||||
|
@ -275,7 +275,7 @@ def extract_stim_data(stimulus):
|
||||
stim_dur = stimulus.duration
|
||||
# calculates the amplitude modulation
|
||||
amp_mod, ny_freq = AM(eodf, stim_freq)
|
||||
return amplitude, df, eodf, stim_freq,stim_dur, amp_mod, ny_freq
|
||||
return amplitude, df, eodf, stim_freq, stim_dur, amp_mod, ny_freq
|
||||
|
||||
def find_exceeding_points(frequency, power, points, delta, threshold):
|
||||
"""
|
||||
|
1575
results/contrast_tuning2024-10-16-ab-invivo-1.svg
Normal file
After Width: | Height: | Size: 42 KiB |
1630
results/contrast_tuning2024-10-16-ad-invivo-1.svg
Normal file
After Width: | Height: | Size: 43 KiB |
1545
results/contrast_tuning2024-10-16-ae-invivo-1.svg
Normal file
After Width: | Height: | Size: 41 KiB |
1710
results/contrast_tuning2024-10-16-af-invivo-1.svg
Normal file
After Width: | Height: | Size: 46 KiB |
1763
results/contrast_tuning2024-10-16-ag-invivo-1.svg
Normal file
After Width: | Height: | Size: 47 KiB |
1571
results/contrast_tuning2024-10-16-ai-invivo-1.svg
Normal file
After Width: | Height: | Size: 41 KiB |
1568
results/contrast_tuning2024-10-16-aj-invivo-1.svg
Normal file
After Width: | Height: | Size: 41 KiB |
1772
results/contrast_tuning2024-10-16-al-invivo-1.svg
Normal file
After Width: | Height: | Size: 48 KiB |
1868
results/contrast_tuning2024-10-21-ac-invivo-1.svg
Normal file
After Width: | Height: | Size: 50 KiB |
1794
results/contrast_tuning2024-10-21-ad-invivo-1.svg
Normal file
After Width: | Height: | Size: 48 KiB |
1780
results/contrast_tuning2024-10-21-ae-invivo-1.svg
Normal file
After Width: | Height: | Size: 48 KiB |
1911
results/contrast_tuning2024-10-21-af-invivo-1.svg
Normal file
After Width: | Height: | Size: 52 KiB |
1464
results/tuning_curve2024-10-16-ab-invivo-1.svg
Normal file
After Width: | Height: | Size: 38 KiB |
1497
results/tuning_curve2024-10-16-ad-invivo-1.svg
Normal file
After Width: | Height: | Size: 39 KiB |
1437
results/tuning_curve2024-10-16-ae-invivo-1.svg
Normal file
After Width: | Height: | Size: 37 KiB |
1587
results/tuning_curve2024-10-16-af-invivo-1.svg
Normal file
After Width: | Height: | Size: 42 KiB |
1621
results/tuning_curve2024-10-16-ag-invivo-1.svg
Normal file
After Width: | Height: | Size: 43 KiB |
1455
results/tuning_curve2024-10-16-ai-invivo-1.svg
Normal file
After Width: | Height: | Size: 38 KiB |
1457
results/tuning_curve2024-10-16-aj-invivo-1.svg
Normal file
After Width: | Height: | Size: 38 KiB |
1587
results/tuning_curve2024-10-16-al-invivo-1.svg
Normal file
After Width: | Height: | Size: 42 KiB |
1663
results/tuning_curve2024-10-21-ac-invivo-1.svg
Normal file
After Width: | Height: | Size: 44 KiB |
1452
results/tuning_curve2024-10-21-ad-invivo-1.svg
Normal file
After Width: | Height: | Size: 38 KiB |
1560
results/tuning_curve2024-10-21-ae-invivo-1.svg
Normal file
After Width: | Height: | Size: 40 KiB |
1663
results/tuning_curve2024-10-21-af-invivo-1.svg
Normal file
After Width: | Height: | Size: 44 KiB |
2565
results/tuning_curves_10_16.svg
Normal file
After Width: | Height: | Size: 71 KiB |
3429
results/tuning_curves_norm.svg
Normal file
After Width: | Height: | Size: 99 KiB |
3429
results/tuning_curves_norm_zoom.svg
Normal file
After Width: | Height: | Size: 99 KiB |