switched position of functions
This commit is contained in:
parent
43181c037d
commit
1205b376ee
@ -54,6 +54,40 @@ def binary_spikes(spike_times, duration, dt):
|
|||||||
binary[spike_indices] = 1 # put the indices into binary
|
binary[spike_indices] = 1 # put the indices into binary
|
||||||
return binary
|
return binary
|
||||||
|
|
||||||
|
def calculate_integral(freq, power, point, delta):
|
||||||
|
"""
|
||||||
|
Calculate the integral around a single specified point.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
frequency : np.array
|
||||||
|
An array of frequencies corresponding to the power values.
|
||||||
|
power : np.array
|
||||||
|
An array of power spectral density values.
|
||||||
|
point : float
|
||||||
|
The harmonic frequency at which to calculate the integral.
|
||||||
|
delta : float
|
||||||
|
Radius of the range for integration around the point.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
integral : float
|
||||||
|
The calculated integral around the point.
|
||||||
|
local_mean : float
|
||||||
|
The local mean value (adjacent integrals).
|
||||||
|
"""
|
||||||
|
indices = (freq >= point - delta) & (freq <= point + delta)
|
||||||
|
integral = np.trapz(power[indices], freq[indices])
|
||||||
|
|
||||||
|
left_indices = (freq >= point - 5 * delta) & (freq < point - delta)
|
||||||
|
right_indices = (freq > point + delta) & (freq <= point + 5 * delta)
|
||||||
|
|
||||||
|
l_integral = np.trapz(power[left_indices], freq[left_indices])
|
||||||
|
r_integral = np.trapz(power[right_indices], freq[right_indices])
|
||||||
|
|
||||||
|
local_mean = np.mean([l_integral, r_integral])
|
||||||
|
return integral, local_mean
|
||||||
|
|
||||||
def extract_stim_data(stimulus):
|
def extract_stim_data(stimulus):
|
||||||
'''
|
'''
|
||||||
extracts all necessary metadata for each stimulus
|
extracts all necessary metadata for each stimulus
|
||||||
@ -252,39 +286,6 @@ def spike_times(stim):
|
|||||||
dt = ti.sampling_interval
|
dt = ti.sampling_interval
|
||||||
return spikes, stim_dur, dt # se changed spike_times to spikes so its not the same as name of function
|
return spikes, stim_dur, dt # se changed spike_times to spikes so its not the same as name of function
|
||||||
|
|
||||||
def calculate_integral(freq, power, point, delta):
|
|
||||||
"""
|
|
||||||
Calculate the integral around a single specified point.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
frequency : np.array
|
|
||||||
An array of frequencies corresponding to the power values.
|
|
||||||
power : np.array
|
|
||||||
An array of power spectral density values.
|
|
||||||
point : float
|
|
||||||
The harmonic frequency at which to calculate the integral.
|
|
||||||
delta : float
|
|
||||||
Half-width of the range for integration around the point.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
integral : float
|
|
||||||
The calculated integral around the point.
|
|
||||||
local_mean : float
|
|
||||||
The local mean value (adjacent integrals).
|
|
||||||
"""
|
|
||||||
indices = (freq >= point - delta) & (freq <= point + delta)
|
|
||||||
integral = np.trapz(power[indices], freq[indices])
|
|
||||||
|
|
||||||
left_indices = (freq >= point - 5 * delta) & (freq < point - delta)
|
|
||||||
right_indices = (freq > point + delta) & (freq <= point + 5 * delta)
|
|
||||||
|
|
||||||
l_integral = np.trapz(power[left_indices], freq[left_indices])
|
|
||||||
r_integral = np.trapz(power[right_indices], freq[right_indices])
|
|
||||||
|
|
||||||
local_mean = np.mean([l_integral, r_integral])
|
|
||||||
return integral, local_mean
|
|
||||||
|
|
||||||
def valid_integrals(integral, local_mean, threshold, point):
|
def valid_integrals(integral, local_mean, threshold, point):
|
||||||
"""
|
"""
|
||||||
|
Loading…
Reference in New Issue
Block a user