diff --git a/boldness_darkside.py b/boldness_darkside.py
new file mode 100644
index 0000000..2853aa1
--- /dev/null
+++ b/boldness_darkside.py
@@ -0,0 +1,120 @@
+import numpy as np
+import matplotlib.pyplot as plt
+import image_marker as im
+import tracking_result as tr
+import os
+import glob
+import argparse
+from IPython import embed
+
+#1. Tankkoordinaten
+def tankcoordinates(video, dontask=False):
+    redo = True
+    if os.path.exists('tankcoordinates.py'):
+        from tankcoordinates import bottom_left, bottom_right, top_left, top_right
+        print("Found tank coordinates top left: %s, top right: %s" % (top_left, top_right))
+        if dontask:
+            return bottom_left, top_left, top_right, bottom_right
+        answer = input('Redo markers? y/n')
+        if answer == 'y' or answer == 'Y':
+            redo = True
+        else:
+            redo = False
+    if redo:
+        tank_task = im.MarkerTask("tank limits", ["bottom left corner", "top left corner", "top right corner", "bottom right corner"], "Mark tank corners")
+        image_marker = im.ImageMarker([tank_task])
+        marker_positions = image_marker.mark_movie(video, 100)
+        bottom_right = marker_positions[0]['bottom right corner']
+        bottom_left = marker_positions[0]['bottom left corner']
+        top_right = marker_positions[0]['top right corner']
+        top_left = marker_positions[0]['top left corner']
+        with open('tankcoordinates.py', 'w') as f:
+            f.write('bottom_left = %s\n' % str(marker_positions[0]['bottom left corner']))
+            f.write('top_left = %s\n' % str(marker_positions[0]['top left corner']))
+            f.write('top_right = %s\n' % str(marker_positions[0]['top right corner']))
+            f.write('bottom_right = %s\n' % str(marker_positions[0]['bottom right corner']))
+
+    return bottom_left, top_left, top_right, bottom_right
+#2. Feederkoordinaten
+
+#3. dark_light Koordinaten
+def dark_light_coordinates(video, dontask=False):
+    redo = True
+    if os.path.exists('dark_light_coordinates.py'):
+        from dark_light_coordinates import left, right, dark_center
+        print("Found dark_light_coordinates left: %s, right: %s, dark_center: %s" % (left, right, dark_center))
+        if dontask:
+            return left, right, dark_center
+        answer = input('Redo markers? y/n')
+        if answer == 'y' or answer == 'Y':
+            redo = True
+        else:
+            redo = False
+    if redo:    
+        dark_light_task = im.MarkerTask('Dark side', ['left', 'right', 'dark_center'], 'Mark light dark separator line')
+        image_marker = im.ImageMarker([dark_light_task])
+        marker_positions = image_marker.mark_movie(video, 100)
+        
+        right = tr.coordinate_transformation(marker_positions[0]['right']) 
+        left = tr.coordinate_transformation(marker_positions[0]['left'])
+        dark_center = tr.coordinate_transformation(marker_positions[0]['dark_center'])
+
+        with open('dark_light_coordinates.py', 'w') as f:
+            f.write('left = %s\n' % str(left))
+            f.write('right = %s\n' % str(right))
+            f.write('dark_center = %s\n' % str(dark_center))
+
+    return left, right, dark_center
+
+#4. Laden der Trackingresults
+def load_tracking_results(dlc_results_file):
+    trs = tr.TrackingResult(dlc_results_file)
+    t, x, y, l, name = trs.position_values(bodypart="snout", framerate=30)
+    return t, x, y, l
+
+#5. Wie lange hält sich der Fisch im Hellen/Dunklen auf? 
+    # Anzahl Frames in der Fisch in definiertem, dunklen Bereich ist, bzw. in der der Fisch nicht im Hellen ist
+def aufenthaltsort(left, center, fish_y):
+    top_is_dark=left[1]>=center[1]
+    #bei wie vielen Frames ist der Fisch im Hellen?
+    if top_is_dark: 
+        hell_count = len(fish_y[fish_y >= left[1]])
+    else:
+        hell_count = len(fish_y[fish_y < left[1]])
+    dark_count=len(fish_y) - hell_count
+    total_count = len(fish_y)
+    return hell_count, dark_count, total_count
+
+
+def analysiere_video(v, dlc, left, center):
+    t, fish_x, fish_y, likelihood = load_tracking_results(dlc)
+    hc, dc, tc = aufenthaltsort(left, center, fish_y)
+    print('Der Fisch hat sich %.2f %% im Dunklen aufgehalten.'%(dc/tc*100))
+    return (dc/tc*100)
+
+
+def main():
+    parser = argparse.ArgumentParser(description="")
+    parser.add_argument("day", type=str, help="The day you want to work on")
+    parser.add_argument("-f", "--folder", type=str, default="/data/boldness/labeled_videos", help="The base folder in which the labeled videos are stored. Default is /data/boldness/labeled_videos")
+    parser.add_argument("-a", "--animal", type=str, default="*", help="The animal id, default is * for all animals")
+    parser.add_argument("-e", "--extension", type=str, default=".mp4", help="The video file extension, default is .mp4")
+    parser.add_argument("-na", "--noask", action="store_true", help="do not ask for coordinates")
+    args = parser.parse_args()
+    
+    videos = sorted(glob.glob(os.path.join(args.folder, args.day, '*%s*%s' % (args.animal, args.extension))))
+    dlc_files = sorted(glob.glob(os.path.join(args.folder, args.day, '*%s*%s' % (args.animal, '.h5'))))
+    results = {}
+    if len(videos) > 0:
+        left, right, center = dark_light_coordinates(videos[0], args.noask)
+        # bl, tl, tr, br = tankcoordinates(v, args.noask)
+        for video, dlc_file in zip(videos, dlc_files):
+            animal = video.split(os.sep)[-1].split('_')[1]
+            p_dark = analysiere_video(video, dlc_file, left, center)
+            results[animal] = p_dark
+        np.save('results_%s.npy' % args.day, results)
+    print(results)
+    
+
+if __name__ == '__main__':
+    main()
\ No newline at end of file
diff --git a/dark_light_preference.py b/dark_light_preference.py
new file mode 100644
index 0000000..2d171bc
--- /dev/null
+++ b/dark_light_preference.py
@@ -0,0 +1,29 @@
+import numpy as np
+import os
+import glob
+import matplotlib.pyplot as pyplot
+from IPython import embed
+
+
+if __name__ == "__main__":
+    result_files = sorted(glob.glob("./results_day*.npy"))
+    results = {}
+
+    for r in result_files:
+        day = r.split(os.sep)[-1].split('_')[-1].split('.')[0]
+        if "day" in results.keys():
+            results["day"].append(day)
+        else:
+            results["day"] = [day]
+        data = np.load(r, allow_pickle=True)
+        d = data.item()
+        for k in d.keys():
+            if k in results.keys():
+                results[k].append(d[k])
+            else:
+                results[k] =[d[k]]
+        
+
+    #res= dict((k, results[k]) for k in ['lepto03DLC' , 'lepto48DLC'] if k in results)
+    #print(res)
+    print(results)
\ No newline at end of file
diff --git a/feeder_positions.py b/feeder_positions.py
new file mode 100644
index 0000000..ae0e8bf
--- /dev/null
+++ b/feeder_positions.py
@@ -0,0 +1,64 @@
+import image_marker as im 
+import matplotlib.pyplot as plt
+import numpy as np
+import tracking_result as tr
+from IPython import embed
+import argparse
+import glob
+import sys
+import dark_light_coordinates as dl
+
+x_limits = np.array([0, 124])
+y_limits = np.array([0, 81])
+light_area_y = [45.5, 81]
+
+def get_risk(position, light_area_y, light_risk_scale=3, x_limits=np.array([0, 124]), y_limits = np.array([0, 81])):
+    """Calculates the risk associated with a certain position in the arena
+
+    Args:
+        position (iterable): two-element vector of position i.e. (x,y)
+        light_area_y (iterable): two element vactor with the start and stop y-coordinates of light area
+        light_risk_scale (int, optional): if position is on th birght side, risk is scaled by this number. Defaults to 2.
+        x_limits : extent of the tank on x axis in cm
+        y_limits : extent of the tank on y axis in cm 
+
+    Returns:
+        float: the risk for this position
+    """
+    min_wall_dist_x = min(np.abs(position[0] - x_limits))
+    min_wall_dist_y = min(np.abs(position[1] - y_limits))
+
+    risk_x = 1/(max(x_limits)/2) * min_wall_dist_x
+    risk_y = 1/(max(y_limits)/2) * min_wall_dist_y
+    #risk_y = 1/(np.abs(np.diff(light_area_y))/2) * min_wall_dist_y
+    total_risk = min(risk_x,risk_y) #+ 0.25 * (risk_x + risk_y)
+
+    is_position_on_the_bright_side = position[1] >= light_area_y[0] and position[1] < light_area_y[1]
+    if is_position_on_the_bright_side:
+        total_risk = total_risk + 1
+    return total_risk
+
+x_positions = np.arange(0,125, 5)
+y_positions = np.arange(0, 81, 5)
+
+risk_matrix = np.zeros((len(x_positions), len(y_positions)))
+print(risk_matrix.shape)
+for i, x in enumerate(x_positions):
+    for j, y in enumerate(y_positions):
+        risk_matrix[i, j] = get_risk([x, y], light_area_y)
+
+plt.imshow(risk_matrix)
+plt.show()
+"""
+if __name__ == '__main__':
+    vid = '/mnt/movies/merle_verena/boldness/labeled_videos/day_5/2020.12.07_lepto48.m4v'
+    feeder_task = im.MarkerTask("Feeder positions", list(map(str, range(1, 9))), "Mark feeder positions")
+    tasks = [feeder_task]
+    image_marker = im.ImageMarker(tasks)
+    # vid1 = "2020.12.11_lepto48DLC_resnet50_boldnessDec11shuffle1_200000_labeled.mp4"
+    print(sys.argv[0])
+    print (sys.argv[1])
+    vid1 = sys.argv[1]
+    marker_positions = im.mark_movie(vid1, 10)
+    print(marker_positions)
+"""
diff --git a/speed.py b/speed.py
new file mode 100644
index 0000000..3cce575
--- /dev/null
+++ b/speed.py
@@ -0,0 +1,28 @@
+import sys
+import tracking_result as tr 
+import numpy as np
+import matplotlib.pyplot as plt 
+from IPython import embed
+#tracking_tools]$ python3 speed.py /mnt/movies/merle_verena/boldness/labeled_videos/day_1/2020.12.01_lepto03DLC_resnet50_boldnessDec11shuffle1_200000.h5
+
+if __name__ == '__main__' :
+    dlc_results = sys.argv[1]
+    
+    trs = tr.TrackingResult(dlc_results)
+    t, x, y, l, name = trs.position_values(bodypart="snout", framerate=30)
+    t = t[l > 0.975]
+    x = x[l > 0.975]
+    y = y[l > 0.975]
+    
+    # Dann Differenzen berechnen 
+    dx= np.diff(x)
+    dy= np.diff(y)
+    dt= np.diff(t)
+
+
+    s = np.sqrt(dx**2 + dy**2)
+    v = s/dt
+    embed ()
+    
+    plt.scatter(x[:-1],y[:-1],c=v)
+    plt.show()