nixview-python/nixview/test/lif.py

93 lines
3.3 KiB
Python

# -*- coding: utf-8 -*-
"""
Copyright © 2014 German Neuroinformatics Node (G-Node)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted under the terms of the BSD License. See
LICENSE file in the root of the Project.
Author: Jan Grewe <jan.grewe@g-node.org>
"""
import numpy as np
class lif:
def __init__(self, stepsize=0.0001, offset=1.6, tau_m=0.025, tau_a=0.02, da=0.0, D=3.5):
self.stepsize = stepsize # simulation stepsize [s]
self.offset = offset # offset curent [nA]
self.tau_m = tau_m # membrane time_constant [s]
self.tau_a = tau_a # adaptation time_constant [s]
self.da = da # increment in adaptation current [nA]
self.D = D # noise intensity
self.v_threshold = 1.0 # spiking threshold
self.v_reset = 0.0 # reset voltage after spiking
self.i_a = 0.0 # current adaptation current
self.v = self.v_reset # current membrane voltage
self.t = 0.0 # current time [s]
self.membrane_voltage = []
self.spike_times = []
def _reset(self):
self.i_a = 0.0
self.v = self.v_reset
self.t = 0.0
self.membrane_voltage = []
self.spike_times = []
def _lif(self, stimulus, noise):
"""
euler solution of the membrane equation with adaptation current and noise
"""
self.i_a -= self.i_a - self.stepsize/self.tau_a * (self.i_a)
self.v += self.stepsize * (-self.v + stimulus + noise + self.offset - self.i_a) / self.tau_m
self.membrane_voltage.append(self.v)
def _next(self, stimulus):
"""
working horse which delegates to the euler and gets the spike times
"""
noise = self.D * (float(np.random.randn() % 10000) - 5000.0)/10000
self._lif(stimulus, noise)
self.t += self.stepsize
if self.v > self.v_threshold and len(self.membrane_voltage) > 1:
self.v = self.v_reset
self.membrane_voltage[len(self.membrane_voltage)-1] = 2.0
self.spike_times.append(self.t)
self.i_a += self.da
def run_const_stim(self, steps, stimulus):
"""
lif simulation with constant stimulus.
"""
self._reset()
for i in range(steps):
self._next(stimulus)
time = np.arange(len(self.membrane_voltage))*self.stepsize
return time, np.array(self.membrane_voltage), np.array(self.spike_times)
def run_stimulus(self, stimulus):
"""
lif simulation with a predefined stimulus trace.
"""
self._reset()
for s in stimulus:
self._next(s)
time = np.arange(len(self.membrane_voltage))*self.stepsize
return time, np.array(self.membrane_voltage), np.array(self.spike_times)
def __str__(self):
out = '\n'.join(["stepsize: \t" + str(self.stepsize),
"offset:\t\t" + str(self.offset),
"tau_m:\t\t" + str(self.tau_m),
"tau_a:\t\t" + str(self.tau_a),
"da:\t\t" + str(self.da),
"D:\t\t" + str(self.D),
"v_threshold:\t" + str(self.v_threshold),
"v_reset:\t" + str(self.v_reset)])
return out
def __repr__(self):
return self.__str__()