nixview-python/nixview/test/create_test_file.py

330 lines
12 KiB
Python

import nixio as nix
import lif
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from PIL import Image as img
from IPython import embed
def bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0,
mux=0.0, muy=0.0, sigmaxy=0.0):
"""
Bivariate Gaussian distribution for equal shape *X*, *Y*.
See `bivariate normal
<http://mathworld.wolfram.com/BivariateNormalDistribution.html>`_
at mathworld.
"""
Xmu = X-mux
Ymu = Y-muy
rho = sigmaxy/(sigmax*sigmay)
z = Xmu**2/sigmax**2 + Ymu**2/sigmay**2 - 2*rho*Xmu*Ymu/(sigmax*sigmay)
denom = 2*np.pi*sigmax*sigmay*np.sqrt(1-rho**2)
return np.exp(-z/(2*(1-rho**2))) / denom
def fake_neuron():
lif_model = lif.lif()
t, v, spike_times = lif_model.run_const_stim(10000, 0.005)
return t, v, spike_times
def create_1d_sampled(f, b):
sample_interval = 0.00005
t = np.arange(0., 0.5, sample_interval)
f1 = 100.
f2 = 200.
a1 = 0.825
a2 = 0.4
eod = a1 * np.sin(t * f1 * 2 * np.pi) + a2 * np.sin(f2 * t * 2 * np.pi)
da = b.create_data_array('eod', 'nix.regular_sampled', data=eod)
da.definition = "Recording of an electric fish's electric organ discharge. \
Demontrates the use of DataArrays to store 1-D data that is \
regularly sampled in time. The DataArray contains one dimension \
descriptor that defines how the time-axis is resolved."
da.unit = 'mV/cm'
da.label = 'electric field'
da.description = ""
d = da.append_sampled_dimension(sample_interval)
d.unit = 's'
d.label = 'time'
sec = f.create_section('in vivo 1', 'setup')
hw = sec.create_section('amplifier', 'hardware.amplifier')
hw['model'] = 'EXT 2F'
hw['manufacturer'] = 'npi electronics'
hw['gain'] = 1000
subj = f.create_section('2015_albi_10', 'subject.animal')
subj['species'] = 'Apteronotus albifrons'
subj['sex'] = 'male'
src1 = b.create_source('setup', 'nix.source.setup')
src1.metadata = sec
src2 = b.create_source('subject', 'nix.source.subject')
src2.metadata = subj
def create_2d(f, b, trials=10):
# create multiple responses of a lif model neuron
voltages = []
for t in range(trials):
time, voltage, _ = fake_neuron()
voltages.append(voltage)
voltages = np.asarray(voltages).T
da = b.create_data_array("membrane voltages", "nix.regular_sampled.series",
dtype=nix.DataType.Double, data=voltages)
d = da.append_sampled_dimension(time[1]-time[0])
d.label = "time"
d.unit = "s"
da.label = "voltage"
da.unit = "mV"
da.append_set_dimension()
average_v = b.create_data_array("average response", "nix.regular_sampled",
dtype=nix.DataType.Double, data=np.mean(voltages, axis=1))
average_v.label = "voltage"
average_v.unit = "mV"
dim = average_v.append_sampled_dimension(time[1] - time[0])
dim.unit = "s"
dim.label = "time"
tag = b.create_tag("average response", "nix.epoch", [0.0])
tag.extent = [time[-1]]
tag.definition = "Average repsonse of the model neuron. The original responses\
are referenced and the average response is linked as a feature of these."
tag.references.append(da)
tag.create_feature(average_v, nix.LinkType.Untagged)
def create_3d(f, b):
# taken from nix tutorial
image = img.open('lena.bmp')
img_data = np.array(image)
channels = list(image.mode)
data = b.create_data_array("lena", "nix.image.rgb", data=img_data)
# add descriptors for width, height and channels
height_dim = data.append_sampled_dimension(1)
height_dim.label = "height"
width_dim = data.append_sampled_dimension(1)
width_dim.label = "width"
color_dim = data.append_set_dimension()
color_dim.labels = channels
def create_1d_range(f, b):
da = b.data_arrays['eod']
eod = da[:]
time = np.asarray(da.dimensions[0].axis(len(eod)))
shift_eod = np.roll(eod, 1)
xings = time[(eod > 0) & (shift_eod < 0)]
range_da = b.create_data_array('zero crossings', 'nix.event', data=xings)
range_da.definition = "1-D data that is irregularly sampled in time. That \
is, the time between consecutive sampling points is not regular. Here we \
store the times at which a signal crossed the zero line. The content of the \
DataArray itself defines the time-axis the only dimension descriptor is thus \
an \"aliasRange\" dimension."
d = range_da.append_alias_range_dimension()
d.unit = 's'
d.label = 'time'
def create_1d_set(f, b):
temp = [13.7, 16.3, 14.6, 11.6, 8.6, 5.7, 4., 2.6, 3., 4., 8.5, 13.1]
labels = ["Sep", "Aug", "Jul", "Jun", "Mai", "April", "Mar", "Feb", "Jan", "Dec", "Nov", "Okt"]
da = b.create_data_array("average temperature", "nix.catergorical", data=temp)
da.definition = "1-D categorical data can also be stored in a DataArray entity. The dimension\
descriptor is in this case a SetDimension. The labels stored in this dimension are used to \
label the ticks of the x-axis."
da.label = "temperature"
da.unit = "C"
d = da.append_set_dimension()
d.labels = labels
src = b.create_source("Data source", "nix.source")
da.sources.append(src)
s = f.create_section("Helgoland Weather data", "data_origin")
s["period"] = "201509 - 201410"
s["url"] = "http://www.dwd.de/DE/leistungen/klimadatendeutschland/klimadatendeutschland.html"
src.metadata = s
return src
def create_2d_set(f, b, source):
temp = [13.7, 16.3, 14.6, 11.6, 8.6, 5.7, 4., 2.6, 3., 4., 8.5, 13.1]
temp_min = [12.3, 13.8, 12.1, 9.9, 6.6, 1.4, 1.5, -0.2, -1.5, -1.4, 0.5, 9.4]
temp_max = [18.7, 23.6, 25.9, 20., 16.6, 11.7, 9.5, 7.2, 9.8, 10.5, 15.8, 18.8]
xlabels = ["Sep", "Aug", "Jul", "Jun", "Mai", "April", "Mar", "Feb", "Jan", "Dec", "Nov", "Okt"]
ylabels = ["Min", "Avg", "Max"]
da = b.create_data_array("2D set of temperatures", "nix.catergorical.series",
data=np.vstack([temp_min, temp, temp_max]))
da.label = "temperature"
da.unit = "C"
d1 = da.append_set_dimension()
d1.labels = ylabels
d2 = da.append_set_dimension()
d2.labels = xlabels
da.sources.append(source)
def create_2d_sample(f, b):
# stolen fom matplolib examples http://matplotlib.org/examples/pylab_examples/image_demo.html
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = Z2 - Z1 # difference of Gaussians
da = b.create_data_array("difference of Gaussians", "nix.2d.heatmap", data=Z)
d1 = da.append_sampled_dimension(delta)
d1.label = "x"
d1.offset = -3.
d2 = da.append_sampled_dimension(delta)
d2.label = "y"
d2.offset = -3.
def create_m_tag(f, b):
trace = b.data_arrays["eod"]
event_times = b.data_arrays["zero crossings"]
mt = b.create_multi_tag("special events", "nix.event_times", event_times)
mt.definition = "A MultiTag entity is used to annotate multiple events or segments \
in a number of referenced DataArrays. In this example, the events are the zero \
crossings (see 1-D DataArrays) in the EOD. Thus, the one DataArray (zeros crossings) \
is used to mark the time points in the other (EOD)."
mt.references.append(trace)
positions = b.create_data_array('epoch_starts', 'nix.event', data=[0.05, 0.35])
positions.append_set_dimension()
extents = b.create_data_array('epoch_ends', 'nix.event', data=[0.1, 0.1])
extents.append_set_dimension()
mtag = b.create_multi_tag("epochs", "nix.event_epochs", positions)
mtag.references.append(trace)
mtag.extents = extents
feature_1 = b.create_data_array("feature 1", "nix.feature",
data=np.sin(100 * 2 * np.pi * np.arange(0, 0.1, 0.00005)))
d = feature_1.append_sampled_dimension(0.00005)
d.unit = "s"
d.label = "time"
feature_1.unit = "mV"
feature_1.label = "voltage"
feature_2 = b.create_data_array("feature 2", "nix.feature",
data=np.cos(150 * 2 * np.pi * np.arange(0, 0.1, 0.00005)))
d = feature_2.append_sampled_dimension(0.00005)
d.unit = "s"
d.label = "time"
feature_2.unit = "mV"
feature_2.label = "voltage"
mtag.create_feature(feature_1, nix.LinkType.Untagged)
mtag.create_feature(feature_2, nix.LinkType.Untagged)
def create_m_tag_3d(f, b):
data = [da for da in b.data_arrays if da.name == 'lena'][0]
# some space for three regions-of-interest
roi_starts = np.zeros((3, 3))
roi_starts[0, :] = [250, 245, 0]
roi_starts[1, :] = [250, 315, 0]
roi_starts[2, :] = [340, 260, 0]
roi_extents = np.zeros((3, 3))
roi_extents[0, :] = [30, 45, 3]
roi_extents[1, :] = [30, 40, 3]
roi_extents[2, :] = [25, 65, 3]
# create the positions DataArray
positions = b.create_data_array("ROI positions", "nix.positions", data=roi_starts)
positions.append_set_dimension() # these can be empty
positions.append_set_dimension()
# create the extents DataArray
extents = b.create_data_array("ROI extents", "nix.extents", data=roi_extents)
extents.append_set_dimension()
extents.append_set_dimension()
# create a MultiTag
multi_tag = b.create_multi_tag("Regions of interest", "nix.roi", positions)
multi_tag.extents = extents
multi_tag.references.append(data)
def create_epoch_tag(f, b):
trace = b.data_arrays["eod"]
p, f = mlab.psd(trace[:], Fs=1./trace.dimensions[0].sampling_interval, NFFT=4096,
noverlap=2048, sides="twosided")
power = b.create_data_array("power spectrum", "nix.sampled.spectrum.psd", data=p)
power.label = "power"
power.unit = "mV^2/cm^2*Hz^-1"
dim = power.append_sampled_dimension(np.mean(np.diff(f)))
dim.offset = f[0]
dim.label = "frequency"
dim.unit = "Hz"
tag = b.create_tag("interesting epoch", "nix.epoch", [0.1])
tag.extent = [0.3]
tag.definition = "This tag tags a region in the referenced DataArray (EOD). One feature\
of the referenced epoch, or region, is the power spectrum of the EOD signal in that region."
tag.references.append(trace)
tag.create_feature(power, nix.LinkType.Untagged)
def create_point_tag(f, b):
trace = b.data_arrays["eod"]
tag = b.create_tag("interesting point", "nix.point", [0.05])
tag.references.append(trace)
def create_test_file(filename):
nix_file = nix.File.open(filename, nix.FileMode.Overwrite)
s = nix_file.create_section('Recording session', 'recording')
s['date'] = '2015-10-21'
s['experimenter'] = 'John Doe'
b = nix_file.create_block("1D data", "nix.recording_session")
b.definition = "This Block contains 1D datasets and links between them. \
These datasets show the use of regualrly sampled and irregularly sampled (range) dimensions."
b.metadata = s
b2 = nix_file.create_block("Categorical data", "nix.analysis_session")
b2.definition = "This Block contains categorical data demonstrating the use of SetDimensions."
create_1d_sampled(nix_file, b)
create_1d_range(nix_file, b)
src = create_1d_set(nix_file, b2)
create_2d_set(nix_file, b2, src)
create_m_tag(nix_file, b)
create_epoch_tag(nix_file, b)
create_point_tag(nix_file, b)
s2 = nix_file.create_section('Lif recording', 'recording')
s2['date'] = '2015-10-21'
s2['experimenter'] = 'John Doe'
s2['neuron'] = 'Leaky integrate and fire neuron'
b2 = nix_file.create_block("2D data", "nix.recording_session")
b2.metadata = s2
b2.definition = "2-dimensional datasets e.g. for storing multiple time-series or image data."
create_2d(nix_file, b2)
create_2d_sample(nix_file, b2)
b3 = nix_file.create_block("3D data", "nix.image_data")
b3.metadata = s
b3.definition = "3-D datasets like RGB image data and links into such datasets."
create_3d(nix_file, b3)
create_m_tag_3d(nix_file, b3)
nix_file.close()
if __name__ == "__main__":
create_test_file('nix_test.h5')