2
0
forked from awendt/pyrelacs
minipyrelacs/pyrelacs/devices/mccdac.py
2024-09-27 19:22:58 +02:00

426 lines
13 KiB
Python

from ctypes import Array, c_double
import time
from typing import Union
from IPython import embed
import numpy.typing as npt
import uldaq
import numpy as np
from pyrelacs.util.logging import config_logging
log = config_logging()
class MccDac:
"""
Represents the Digital/Analog Converter from Meassuring Computing.
provides methods for writing and reading the Analog / Digital input and output.
Connects to the DAC device.
Attributes
----------
daq_device : uldaq.DaqDevice
DaqDevice for handling connecting, releasing and disconnecting
ai_device : uldaq.AiDevice
The Analog input Device
ao_device :
Analog output Device
dio_device :
Digital Input Output
"""
def __init__(self) -> None:
devices = uldaq.get_daq_device_inventory(uldaq.InterfaceType.USB)
log.debug(f"Found daq devices {len(devices)}, connecting to the first one")
try:
self.daq_device = uldaq.DaqDevice(devices[0])
except uldaq.ul_exception.ULException as e:
log.error("Did not found daq devices, please connect one")
raise e
try:
self.daq_device.connect()
except uldaq.ul_exception.ULException:
self.disconnect_dac()
self.connect_dac()
self.ai_device = self.daq_device.get_ai_device()
self.ao_device = self.daq_device.get_ao_device()
self.dio_device = self.daq_device.get_dio_device()
log.debug("Connected")
def connect_dac(self):
"""
Connecting to the DAQ device
"""
devices = uldaq.get_daq_device_inventory(uldaq.InterfaceType.USB)
log.debug(f"Found daq devices {len(devices)}, connecting to the first one")
if len(devices) == 0:
log.error("Did not found daq devices, please connect one")
exit(1)
self.daq_device = uldaq.DaqDevice(devices[0])
self.daq_device.connect()
self.ai_device = self.daq_device.get_ai_device()
self.ao_device = self.daq_device.get_ao_device()
self.dio_device = self.daq_device.get_dio_device()
log.debug("Connected")
def read_analog(
self,
channels: list[int],
duration: int,
samplerate: float,
AiInputMode: uldaq.AiInputMode = uldaq.AiInputMode.SINGLE_ENDED,
Range: uldaq.Range = uldaq.Range.BIP10VOLTS,
ScanOption: uldaq.ScanOption = uldaq.ScanOption.DEFAULTIO,
AInScanFlag: uldaq.AInScanFlag = uldaq.AInScanFlag.DEFAULT,
) -> Array[c_double]:
"""
Reading the analog input of the DAC device
Creates a c_double Array for storing the acquired data
Parameters
----------
channels : list[int]
channels to read from, provide only two int's in a list (ex [0, 1] or [0, 4])
for sampling from the range(channel0, channel4)
duration : int
duration of sampling period
samplerate : float
samplerate for the duration of sampling
AiInputMode : uldaq.AiInputMode = uldaq.AiInputMode.SINGLE_ENDED
Contains attributes indicating A/D channel input modes.
Compares to Ground
Range : uldaq.Range = uldaq.Range.BIP10VOLTS
Range of the output
ScanOption : uldaq.ScanOption = uldaq.ScanOption.DEFAULTIO
Specific Flags for acuiring the input
AInScanFlag : uldaq.AInScanFlag = uldaq.AInScanFlag.DEFAULT
Scaling of the data
Returns
-------
Array[c_double]
"""
assert len(channels) == 2, log.error("You can only provide two channels [0, 1]")
if channels[0] != channels[1]:
buffer_len_channels = 2
else:
buffer_len_channels = 1
buffer_len = np.shape(np.arange(0, duration, 1 / samplerate))[0]
data_analog_input = uldaq.create_float_buffer(buffer_len_channels, buffer_len)
er = self.ai_device.a_in_scan(
channels[0],
channels[1],
AiInputMode,
Range,
buffer_len,
samplerate,
ScanOption,
AInScanFlag,
data=data_analog_input,
)
return data_analog_input
def write_analog(
self,
data: Union[list, npt.NDArray],
channels: list[int],
samplerate: float,
Range: uldaq.Range = uldaq.Range.BIP10VOLTS,
ScanOption: uldaq.ScanOption = uldaq.ScanOption.DEFAULTIO,
AOutScanFlag: uldaq.AOutScanFlag = uldaq.AOutScanFlag.DEFAULT,
) -> Array[c_double]:
"""
Writes data to the DAC device.
Creates a c_double Array for writing the data
Parameters
----------
data : Union[list, npt.NDArray]
data which should be written to the DAC
channels : list[int]
channels to read from, provide only two int's in a list (ex [0, 1])
for sampling from the range(channel0, channel1)
DAC 16 has only 2 output channels
samplerate : float
samplerate for the duration of sampling
Range : uldaq.Range = uldaq.Range.BIP10VOLTS
Range of the output
ScanOption : uldaq.ScanOption = uldaq.ScanOption.DEFAULTIO
Specific Flags for acuiring the input
AOutScanFlag : uldaq.AOutScanFlag = uldaq.AOutScanFlag.DEFAULT
For Scaling the data
Returns
-------
Array[c_double]
"""
assert len(channels) == 2, log.error("You can only provide two channels [0, 1]")
buffer = c_double * len(data)
data_analog_output = buffer(*data)
log.debug(f"Created C_double data {data_analog_output}")
try:
err = self.ao_device.a_out_scan(
channels[0],
channels[1],
Range,
int(len(data)),
samplerate,
ScanOption,
AOutScanFlag,
data_analog_output,
)
except Exception as e:
print(f"{e}")
self.set_analog_to_zero()
self.disconnect_dac()
return data_analog_output
def set_analog_to_zero(self, channels: list[int] = [0, 1]) -> None:
"""
Sets all analog outputs to zero
Parameters
----------
channels : list[int]
channels to read from, provide only two int's in a list (ex [0, 1])
for sampling from the range(channel0, channel1)
DAC 16 has only 2 output channels
"""
try:
err = self.ao_device.a_out_list(
channels[0],
channels[1],
[
uldaq.Range.BIP10VOLTS,
uldaq.Range.BIP10VOLTS,
],
uldaq.AOutListFlag.DEFAULT,
[0, 0],
)
except Exception as e:
log.error("f{e}")
log.error("disconnection dac")
self.disconnect_dac()
def digital_trigger(self, ch: int = 0) -> None:
"""
Writes a 1 to a specified digital channel, if the channel is already on 1 switches it to
0 and after Nanosekond it writes a 1 to the specified digital channel
Parameters
----------
ch : int
Channel to trigger
"""
data = self.read_bit(channel=ch)
if data:
self.write_bit(channel=ch, bit=0)
time.time_ns()
self.write_bit(channel=ch, bit=1)
else:
self.write_bit(channel=ch, bit=1)
def write_bit(self, channel: int = 0, bit: int = 1) -> None:
"""
Writes a 0 / 1 to a specified digitial channel
Parameters
----------
channel : int
Digital channel to write
bit : int
0 / 1 for writing to the digital channel
"""
self.dio_device.d_config_bit(
uldaq.DigitalPortType.AUXPORT, channel, uldaq.DigitalDirection.OUTPUT
)
self.dio_device.d_bit_out(
uldaq.DigitalPortType.AUXPORT, bit_number=channel, data=bit
)
def read_bit(self, channel: int = 0) -> int:
"""
Reads a 0 / 1 from the specified digital channel
Parameters
----------
channel : int
Digital channel to read from
Returns
-------
bit : int
0 or 1 from the digital channel
"""
bit = self.dio_device.d_bit_in(uldaq.DigitalPortType.AUXPORT, channel)
return bit
def disconnect_dac(self):
self.daq_device.disconnect()
self.daq_device.release()
def check_attenuator(self) -> None:
"""
For checking the attenuator in the DAC device that was implemented to attenuate the
analog signal to mV.
Writes to Channel 0 of the analog output with different attenuation levels
0, 0, -2, -5, -10, -20, -50 dB and the second 0 has a software mute
"""
SAMPLERATE = 40_000.0
DURATION = 5
AMPLITUDE = 1
SINFREQ = 1
t = np.arange(0, DURATION, 1 / SAMPLERATE)
data = AMPLITUDE * np.sin(2 * np.pi * SINFREQ * t)
# data_channels = np.concatenate((data, data))
db_values = [0, 0, -2, -5, -10, -20, -50]
for i, db_value in enumerate(db_values):
log.info(f"Attenuating the Channels, with {db_value}")
if i == 1:
log.info("Muting the Channels")
self.set_attenuation_level(
db_value, db_value, mute_channel1=True, mute_channel2=True
)
else:
self.set_attenuation_level(db_value, db_value)
_ = self.write_analog(
data,
[0, 0],
SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
Range=uldaq.Range.BIP10VOLTS,
)
self.digital_trigger()
try:
self.ao_device.scan_wait(uldaq.WaitType.WAIT_UNTIL_DONE, 15)
self.write_bit(channel=0, bit=0)
self.set_analog_to_zero()
except uldaq.ul_exception.ULException:
log.debug("Operation timed out")
self.write_bit(channel=0, bit=0)
self.disconnect_dac()
self.connect_dac()
self.set_analog_to_zero()
finally:
self.write_bit(channel=0, bit=0)
self.disconnect_dac()
self.connect_dac()
self.set_analog_to_zero()
log.info("Sleeping for 1 second, before next attenuation")
time.sleep(1)
def set_attenuation_level(
self,
db_channel1: float = 5.0,
db_channel2: float = 5.0,
mute_channel1: bool = False,
mute_channel2: bool = False,
):
"""
Setting the attenuation level of the chip that is connected to the DAQ
The attenuation level is set by writing to the connected digital output pin 5
where the strobepin 6 is signaling the when the bit was send.
The cspin is set from 1 to 0 for the start and 0 to 1 for signaling the end
of the data write process.
The mute pin should be set to 1 for the device to be working.
More information in the AttCS3310.pdf in the doc
ident : attdev-1
strobepin : 6
datainpin : 5
dataoutpin: -1
cspin : 4
mutepin : 7
zcenpin : -1
Parameters
----------
db_channel1 : float
dB Attenuation level for the first channel
db_channel2 : float
dB Attenuation level for the second channel
mute_channel1 : bool
Software mute for the first channel
mute_channel2 : bool
Software mute for the second channel
"""
self.activate_attenuator()
hardware_possible_db = np.arange(-95.5, 32.0, 0.5)
byte_number = np.arange(1, 256)
byte_number_db1 = byte_number[hardware_possible_db == db_channel1][0]
binary_db1 = np.binary_repr(byte_number_db1, width=8)
byte_number_db2 = byte_number[hardware_possible_db == db_channel2][0]
binary_db2 = np.binary_repr(byte_number_db2, width=8)
if mute_channel1:
log.info("Muting channel one")
binary_db1 = "00000000"
if mute_channel2:
log.info("Muting channel one")
binary_db2 = "00000000"
channels_db = binary_db2 + binary_db1
self.write_bit(channel=4, bit=0)
for b in channels_db:
self.write_bit(channel=5, bit=int(b))
time.time_ns()
self.write_bit(channel=6, bit=1)
time.time_ns()
self.write_bit(channel=6, bit=0)
time.time_ns()
self.write_bit(channel=4, bit=1)
def activate_attenuator(self):
"""
Activation of the attenuator, where the cspin and mute pin is set to 1,
and the datapin and strobpin to 0
"""
for ch, b in zip([4, 5, 6, 7], [1, 0, 0, 1]):
self.write_bit(channel=ch, bit=b)
def deactivate_attenuator(self):
"""
Writes a 0 to the mute pin, which is deactivating the attenuator
"""
# mute should be enabled for starting calibration
self.write_bit(channel=7, bit=0)