2
0
forked from awendt/pyrelacs
minipyrelacs/pyrelacs/repros/calbi.py

258 lines
8.1 KiB
Python

import signal
import sys
import faulthandler
import time
import uldaq
from IPython import embed
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import peak_widths, welch, csd
from scipy.signal import find_peaks
from pyrelacs.repros.mccdac import MccDac
from pyrelacs.util.logging import config_logging
log = config_logging()
faulthandler.enable()
class Calibration(MccDac):
def __init__(self) -> None:
super().__init__()
def segfault_handler(self, signum, frame):
print(f"Segmentation fault caught! Signal number: {signum}")
self.disconnect_dac()
sys.exit(1) # Gracefully exit the program
def check_amplitude(self):
db_values = [0.0, -5.0, -10.0, -20.0, -50.0]
colors = ["red", "green", "blue", "black", "yellow"]
self.set_attenuation_level(db_channel1=0.0, db_channel2=0.0)
# write to ananlog 1
t = np.arange(0, DURATION, 1 / SAMPLERATE)
data = AMPLITUDE * np.sin(2 * np.pi * SINFREQ * t)
fig, ax = plt.subplots()
for i, db_value in enumerate(db_values):
self.set_attenuation_level(db_channel1=db_value, db_channel2=db_value)
log.debug(f"{db_value}")
stim = self.write_analog(
data,
[0, 0],
SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
data_channel_one = self.read_analog(
[0, 0], DURATION, SAMPLERATE, ScanOption=uldaq.ScanOption.EXTTRIGGER
)
time.sleep(1)
log.debug("Starting the Scan")
self.diggital_trigger()
try:
self.ao_device.scan_wait(uldaq.WaitType.WAIT_UNTIL_DONE, 15)
log.debug("Scan finished")
self.write_bit(channel=0, bit=0)
time.sleep(1)
self.set_analog_to_zero()
except uldaq.ul_exception.ULException:
log.debug("Operation timed out")
# reset the diggital trigger
self.write_bit(channel=0, bit=0)
time.sleep(1)
self.set_analog_to_zero()
self.disconnect_dac()
if i == 0:
ax.plot(t, stim, label=f"Input_{db_value}", color=colors[i])
ax.plot(t, data_channel_one, label=f"Reaout {db_value}", color=colors[i])
ax.legend()
plt.show()
self.disconnect_dac()
def check_beat(self):
self.set_attenuation_level(db_channel1=-10.0, db_channel2=0.0)
t = np.arange(0, DURATION, 1 / SAMPLERATE)
data = AMPLITUDE * np.sin(2 * np.pi * SINFREQ * t)
# data = np.concatenate((data, data))
db_values = [0.0, -5.0, -8.5, -10.0]
colors = ["red", "blue", "black", "green"]
colors_in = ["lightcoral", "lightblue", "grey", "lightgreen"]
fig, axes = plt.subplots(2, 2, sharex="col")
for i, db_value in enumerate(db_values):
self.set_attenuation_level(db_channel1=db_value)
stim = self.write_analog(
data,
[0, 0],
SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
readout = self.read_analog(
[0, 1],
DURATION,
SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
self.diggital_trigger()
signal.signal(signal.SIGSEGV, self.segfault_handler)
log.info(self.ao_device)
ai_status = uldaq.ScanStatus.RUNNING
ao_status = uldaq.ScanStatus.RUNNING
log.debug(
f"Status Analog_output {ao_status}\n, Status Analog_input {ai_status}"
)
while (ai_status != uldaq.ScanStatus.IDLE) and (
ao_status != uldaq.ScanStatus.IDLE
):
# log.debug("Scanning")
time.time_ns()
ai_status = self.ai_device.get_scan_status()[0]
ao_status = self.ao_device.get_scan_status()[0]
self.write_bit(channel=0, bit=0)
log.debug(
f"Status Analog_output {ao_status}\n, Status Analog_input {ai_status}"
)
channel1 = np.array(readout[::2])
channel2 = np.array(readout[1::2])
beat = channel1 + channel2
beat_square = beat**2
f, powerspec = welch(beat, fs=SAMPLERATE)
powerspec = decibel(powerspec)
f_sq, powerspec_sq = welch(beat_square, fs=SAMPLERATE)
powerspec_sq = decibel(powerspec_sq)
peaks = find_peaks(powerspec_sq, prominence=20)[0]
f_stim, powerspec_stim = welch(channel1, fs=SAMPLERATE)
powerspec_stim = decibel(powerspec_stim)
f_in, powerspec_in = welch(channel2, fs=SAMPLERATE)
powerspec_in = decibel(powerspec_in)
axes[0, 0].plot(
t,
channel1,
label=f"{db_value} Readout Channel0",
color=colors[i],
)
axes[0, 0].plot(
t,
channel2,
label=f"{db_value} Readout Channel1",
color=colors_in[i],
)
axes[0, 1].plot(
f_stim,
powerspec_stim,
label=f"{db_value} powerspec Channel0",
color=colors[i],
)
axes[0, 1].plot(
f_in,
powerspec_in,
label=f"{db_value} powerspec Channel2",
color=colors_in[i],
)
axes[0, 1].set_xlabel("Freq [HZ]")
axes[0, 1].set_ylabel("dB")
axes[1, 0].plot(
t,
beat,
label="Beat",
color=colors[i],
)
axes[1, 0].plot(
t,
beat**2,
label="Beat squared",
color=colors_in[i],
)
axes[1, 0].legend()
axes[1, 1].plot(
f,
powerspec,
color=colors[i],
)
axes[1, 1].plot(
f_sq,
powerspec_sq,
color=colors_in[i],
label=f"dB {db_value}, first peak {np.min(f_sq[peaks])}",
)
axes[1, 1].scatter(
f_sq[peaks],
powerspec_sq[peaks],
color="maroon",
)
axes[1, 1].set_xlabel("Freq [HZ]")
axes[1, 1].set_ylabel("dB")
axes[0, 0].legend()
axes[1, 1].legend()
plt.show()
self.set_analog_to_zero()
self.disconnect_dac()
def decibel(power, ref_power=1.0, min_power=1e-20):
"""Transform power to decibel relative to ref_power.
\\[ decibel = 10 \\cdot \\log_{10}(power/ref\\_power) \\]
Power values smaller than `min_power` are set to `-np.inf`.
Parameters
----------
power: float or array
Power values, for example from a power spectrum or spectrogram.
ref_power: float or None or 'peak'
Reference power for computing decibel.
If set to `None` or 'peak', the maximum power is used.
min_power: float
Power values smaller than `min_power` are set to `-np.inf`.
Returns
-------
decibel_psd: array
Power values in decibel relative to `ref_power`.
"""
if np.isscalar(power):
tmp_power = np.array([power])
decibel_psd = np.array([power])
else:
tmp_power = power
decibel_psd = power.copy()
if ref_power is None or ref_power == "peak":
ref_power = np.max(decibel_psd)
decibel_psd[tmp_power <= min_power] = float("-inf")
decibel_psd[tmp_power > min_power] = 10.0 * np.log10(
decibel_psd[tmp_power > min_power] / ref_power
)
if np.isscalar(power):
return decibel_psd[0]
else:
return decibel_psd
if __name__ == "__main__":
SAMPLERATE = 40_000.0
DURATION = 5
AMPLITUDE = 1
SINFREQ = 1000
cal = Calibration()
# cal.check_attenuator()
# cal.check_amplitude()
cal.check_beat()