2
0
forked from awendt/pyrelacs

checking amplitude, checking beat

This commit is contained in:
wendtalexander 2024-09-26 11:25:13 +02:00
parent d3800ddfa2
commit 66ea22fb4a

View File

@ -1,12 +1,14 @@
import ctypes
import signal
import sys
import faulthandler
import time
import uldaq
from IPython import embed
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import peak_widths, welch, csd
from scipy.signal import find_peaks
from pyrelacs.repros.mccdac import MccDac
from pyrelacs.util.logging import config_logging
@ -19,13 +21,23 @@ class Calibration(MccDac):
def __init__(self) -> None:
super().__init__()
def segfault_handler(self, signum, frame):
print(f"Segmentation fault caught! Signal number: {signum}")
self.disconnect_dac()
sys.exit(1) # Gracefully exit the program
def check_amplitude(self):
db_values = [0.0, -5.0, -10.0, -20.0, -50.0]
colors = ["red", "green", "blue", "black", "yellow"]
self.set_attenuation_level(db_channel1=0.0, db_channel2=0.0)
# write to ananlog 1
t = np.arange(0, DURATION, 1 / SAMPLERATE)
data = AMPLITUDE * np.sin(2 * np.pi * SINFREQ * t)
data_channels = np.zeros(2 * len(data))
# c = [(i,for i,j in zip(data, data)]
fig, ax = plt.subplots()
for i, db_value in enumerate(db_values):
self.set_attenuation_level(db_channel1=db_value, db_channel2=db_value)
log.debug(f"{db_value}")
stim = self.write_analog(
data,
@ -33,15 +45,18 @@ class Calibration(MccDac):
SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
data_channel_one = self.read_analog(
[0, 0], DURATION, SAMPLERATE, ScanOption=uldaq.ScanOption.EXTTRIGGER
)
time.sleep(1)
log.debug("Starting the Scan")
self.diggital_trigger()
try:
self.ai_device.scan_wait(uldaq.WaitType.WAIT_UNTIL_DONE, 15)
self.ao_device.scan_wait(uldaq.WaitType.WAIT_UNTIL_DONE, 15)
log.debug("Scan finished")
self.write_bit(channel=0, bit=0)
time.sleep(1)
self.set_analog_to_zero()
@ -52,16 +67,141 @@ class Calibration(MccDac):
time.sleep(1)
self.set_analog_to_zero()
self.disconnect_dac()
if i == 0:
ax.plot(t, stim, label=f"Input_{db_value}", color=colors[i])
ax.plot(t, data_channel_one, label=f"Reaout {db_value}", color=colors[i])
ax.legend()
plt.show()
self.disconnect_dac()
def check_beat(self):
self.set_attenuation_level(db_channel1=-10.0, db_channel2=0.0)
t = np.arange(0, DURATION, 1 / SAMPLERATE)
data = AMPLITUDE * np.sin(2 * np.pi * SINFREQ * t)
# data = np.concatenate((data, data))
stim = self.write_analog(
data,
[0, 0],
SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
readout = self.read_analog(
[0, 1],
DURATION,
SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
self.diggital_trigger()
signal.signal(signal.SIGSEGV, self.segfault_handler)
log.info(self.ao_device)
ai_status = uldaq.ScanStatus.RUNNING
ao_status = uldaq.ScanStatus.RUNNING
log.debug(
f"Status Analog_output {ao_status}\n, Status Analog_input {ai_status}"
)
while (ai_status != uldaq.ScanStatus.IDLE) and (
ao_status != uldaq.ScanStatus.IDLE
):
log.debug("Scanning")
time.sleep(0.5)
ai_status = self.ai_device.get_scan_status()[0]
ao_status = self.ao_device.get_scan_status()[0]
log.debug(
f"Status Analog_output {ao_status}\n, Status Analog_input {ai_status}"
)
fig, axes = plt.subplots(2, 2, sharex="col")
channel1 = np.array(readout[::2])
channel2 = np.array(readout[1::2])
beat = channel1 + channel2
beat_square = beat**2
f, powerspec = welch(beat, fs=SAMPLERATE)
powerspec = decibel(powerspec)
f_sq, powerspec_sq = welch(beat_square, fs=SAMPLERATE)
powerspec_sq = decibel(powerspec_sq)
peaks = find_peaks(powerspec_sq, prominence=20)[0]
f_stim, powerspec_stim = welch(channel1, fs=SAMPLERATE)
powerspec_stim = decibel(powerspec_stim)
f_in, powerspec_in = welch(channel2, fs=SAMPLERATE)
powerspec_in = decibel(powerspec_in)
axes[0, 0].plot(t, channel1, label="Readout Channel0")
axes[0, 0].plot(t, channel2, label="Readout Channel1")
axes[0, 1].plot(f_stim, powerspec_stim, label="powerspec Channel0")
axes[0, 1].plot(f_in, powerspec_in, label="powerspec Channel2")
axes[0, 1].set_xlabel("Freq [HZ]")
axes[0, 1].set_ylabel("dB")
axes[1, 0].plot(t, beat, label="Beat")
axes[1, 0].plot(t, beat**2, label="Beat squared")
axes[1, 0].legend()
axes[1, 1].plot(f, powerspec)
axes[1, 1].plot(f_sq, powerspec_sq)
axes[1, 1].scatter(f_sq[peaks], powerspec_sq[peaks])
axes[1, 1].set_xlabel("Freq [HZ]")
axes[1, 1].set_ylabel("dB")
axes[0, 0].legend()
embed()
exit()
def decibel(power, ref_power=1.0, min_power=1e-20):
"""Transform power to decibel relative to ref_power.
\\[ decibel = 10 \\cdot \\log_{10}(power/ref\\_power) \\]
Power values smaller than `min_power` are set to `-np.inf`.
Parameters
----------
power: float or array
Power values, for example from a power spectrum or spectrogram.
ref_power: float or None or 'peak'
Reference power for computing decibel.
If set to `None` or 'peak', the maximum power is used.
min_power: float
Power values smaller than `min_power` are set to `-np.inf`.
Returns
-------
decibel_psd: array
Power values in decibel relative to `ref_power`.
"""
if np.isscalar(power):
tmp_power = np.array([power])
decibel_psd = np.array([power])
else:
tmp_power = power
decibel_psd = power.copy()
if ref_power is None or ref_power == "peak":
ref_power = np.max(decibel_psd)
decibel_psd[tmp_power <= min_power] = float("-inf")
decibel_psd[tmp_power > min_power] = 10.0 * np.log10(
decibel_psd[tmp_power > min_power] / ref_power
)
if np.isscalar(power):
return decibel_psd[0]
else:
return decibel_psd
if __name__ == "__main__":
SAMPLERATE = 40_000.0
DURATION = 5
AMPLITUDE = 0.5
SINFREQ = 10
AMPLITUDE = 1
SINFREQ = 1000
cal = Calibration()
# cal.ccheck_attenuator()
cal.check_amplitude()
# cal.check_attenuator()
# cal.check_amplitude()
cal.check_beat()