2
0
forked from awendt/pyrelacs

checking amplitude, checking beat

This commit is contained in:
wendtalexander 2024-09-26 11:25:13 +02:00
parent d3800ddfa2
commit 66ea22fb4a

View File

@ -1,12 +1,14 @@
import ctypes import signal
import sys
import faulthandler import faulthandler
import time import time
import uldaq import uldaq
from IPython import embed from IPython import embed
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from scipy.signal import peak_widths, welch, csd
from scipy.signal import find_peaks
from pyrelacs.repros.mccdac import MccDac from pyrelacs.repros.mccdac import MccDac
from pyrelacs.util.logging import config_logging from pyrelacs.util.logging import config_logging
@ -19,13 +21,67 @@ class Calibration(MccDac):
def __init__(self) -> None: def __init__(self) -> None:
super().__init__() super().__init__()
def segfault_handler(self, signum, frame):
print(f"Segmentation fault caught! Signal number: {signum}")
self.disconnect_dac()
sys.exit(1) # Gracefully exit the program
def check_amplitude(self): def check_amplitude(self):
db_values = [0.0, -5.0, -10.0, -20.0, -50.0]
colors = ["red", "green", "blue", "black", "yellow"]
self.set_attenuation_level(db_channel1=0.0, db_channel2=0.0) self.set_attenuation_level(db_channel1=0.0, db_channel2=0.0)
# write to ananlog 1 # write to ananlog 1
t = np.arange(0, DURATION, 1 / SAMPLERATE) t = np.arange(0, DURATION, 1 / SAMPLERATE)
data = AMPLITUDE * np.sin(2 * np.pi * SINFREQ * t) data = AMPLITUDE * np.sin(2 * np.pi * SINFREQ * t)
data_channels = np.zeros(2 * len(data)) fig, ax = plt.subplots()
# c = [(i,for i,j in zip(data, data)]
for i, db_value in enumerate(db_values):
self.set_attenuation_level(db_channel1=db_value, db_channel2=db_value)
log.debug(f"{db_value}")
stim = self.write_analog(
data,
[0, 0],
SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
data_channel_one = self.read_analog(
[0, 0], DURATION, SAMPLERATE, ScanOption=uldaq.ScanOption.EXTTRIGGER
)
time.sleep(1)
log.debug("Starting the Scan")
self.diggital_trigger()
try:
self.ao_device.scan_wait(uldaq.WaitType.WAIT_UNTIL_DONE, 15)
log.debug("Scan finished")
self.write_bit(channel=0, bit=0)
time.sleep(1)
self.set_analog_to_zero()
except uldaq.ul_exception.ULException:
log.debug("Operation timed out")
# reset the diggital trigger
self.write_bit(channel=0, bit=0)
time.sleep(1)
self.set_analog_to_zero()
self.disconnect_dac()
if i == 0:
ax.plot(t, stim, label=f"Input_{db_value}", color=colors[i])
ax.plot(t, data_channel_one, label=f"Reaout {db_value}", color=colors[i])
ax.legend()
plt.show()
self.disconnect_dac()
def check_beat(self):
self.set_attenuation_level(db_channel1=-10.0, db_channel2=0.0)
t = np.arange(0, DURATION, 1 / SAMPLERATE)
data = AMPLITUDE * np.sin(2 * np.pi * SINFREQ * t)
# data = np.concatenate((data, data))
stim = self.write_analog( stim = self.write_analog(
data, data,
@ -33,35 +89,119 @@ class Calibration(MccDac):
SAMPLERATE, SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER, ScanOption=uldaq.ScanOption.EXTTRIGGER,
) )
data_channel_one = self.read_analog( readout = self.read_analog(
[0, 0], DURATION, SAMPLERATE, ScanOption=uldaq.ScanOption.EXTTRIGGER [0, 1],
DURATION,
SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
) )
time.sleep(1)
self.diggital_trigger() self.diggital_trigger()
signal.signal(signal.SIGSEGV, self.segfault_handler)
log.info(self.ao_device)
ai_status = uldaq.ScanStatus.RUNNING
ao_status = uldaq.ScanStatus.RUNNING
try: log.debug(
self.ai_device.scan_wait(uldaq.WaitType.WAIT_UNTIL_DONE, 15) f"Status Analog_output {ao_status}\n, Status Analog_input {ai_status}"
self.write_bit(channel=0, bit=0) )
time.sleep(1) while (ai_status != uldaq.ScanStatus.IDLE) and (
self.set_analog_to_zero() ao_status != uldaq.ScanStatus.IDLE
except uldaq.ul_exception.ULException: ):
log.debug("Operation timed out") log.debug("Scanning")
# reset the diggital trigger time.sleep(0.5)
self.write_bit(channel=0, bit=0) ai_status = self.ai_device.get_scan_status()[0]
time.sleep(1) ao_status = self.ao_device.get_scan_status()[0]
self.set_analog_to_zero()
self.disconnect_dac() log.debug(
f"Status Analog_output {ao_status}\n, Status Analog_input {ai_status}"
)
fig, axes = plt.subplots(2, 2, sharex="col")
channel1 = np.array(readout[::2])
channel2 = np.array(readout[1::2])
beat = channel1 + channel2
beat_square = beat**2
f, powerspec = welch(beat, fs=SAMPLERATE)
powerspec = decibel(powerspec)
f_sq, powerspec_sq = welch(beat_square, fs=SAMPLERATE)
powerspec_sq = decibel(powerspec_sq)
peaks = find_peaks(powerspec_sq, prominence=20)[0]
f_stim, powerspec_stim = welch(channel1, fs=SAMPLERATE)
powerspec_stim = decibel(powerspec_stim)
f_in, powerspec_in = welch(channel2, fs=SAMPLERATE)
powerspec_in = decibel(powerspec_in)
axes[0, 0].plot(t, channel1, label="Readout Channel0")
axes[0, 0].plot(t, channel2, label="Readout Channel1")
axes[0, 1].plot(f_stim, powerspec_stim, label="powerspec Channel0")
axes[0, 1].plot(f_in, powerspec_in, label="powerspec Channel2")
axes[0, 1].set_xlabel("Freq [HZ]")
axes[0, 1].set_ylabel("dB")
axes[1, 0].plot(t, beat, label="Beat")
axes[1, 0].plot(t, beat**2, label="Beat squared")
axes[1, 0].legend()
axes[1, 1].plot(f, powerspec)
axes[1, 1].plot(f_sq, powerspec_sq)
axes[1, 1].scatter(f_sq[peaks], powerspec_sq[peaks])
axes[1, 1].set_xlabel("Freq [HZ]")
axes[1, 1].set_ylabel("dB")
axes[0, 0].legend()
embed() embed()
exit() exit()
def decibel(power, ref_power=1.0, min_power=1e-20):
"""Transform power to decibel relative to ref_power.
\\[ decibel = 10 \\cdot \\log_{10}(power/ref\\_power) \\]
Power values smaller than `min_power` are set to `-np.inf`.
Parameters
----------
power: float or array
Power values, for example from a power spectrum or spectrogram.
ref_power: float or None or 'peak'
Reference power for computing decibel.
If set to `None` or 'peak', the maximum power is used.
min_power: float
Power values smaller than `min_power` are set to `-np.inf`.
Returns
-------
decibel_psd: array
Power values in decibel relative to `ref_power`.
"""
if np.isscalar(power):
tmp_power = np.array([power])
decibel_psd = np.array([power])
else:
tmp_power = power
decibel_psd = power.copy()
if ref_power is None or ref_power == "peak":
ref_power = np.max(decibel_psd)
decibel_psd[tmp_power <= min_power] = float("-inf")
decibel_psd[tmp_power > min_power] = 10.0 * np.log10(
decibel_psd[tmp_power > min_power] / ref_power
)
if np.isscalar(power):
return decibel_psd[0]
else:
return decibel_psd
if __name__ == "__main__": if __name__ == "__main__":
SAMPLERATE = 40_000.0 SAMPLERATE = 40_000.0
DURATION = 5 DURATION = 5
AMPLITUDE = 0.5 AMPLITUDE = 1
SINFREQ = 10 SINFREQ = 1000
cal = Calibration() cal = Calibration()
# cal.ccheck_attenuator() # cal.check_attenuator()
cal.check_amplitude() # cal.check_amplitude()
cal.check_beat()