gp_neurobio/code/plot_eodform_spikehist.py
2018-11-28 16:33:40 +01:00

102 lines
3.0 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from read_baseline_data import *
from NixFrame import *
from utility import *
from IPython import embed
# plot and data values
inch_factor = 2.54
data_dir = '../data'
#dataset = '2018-11-09-ad-invivo-1'
dataset = '2018-11-14-al-invivo-1'
# read eod and time of baseline
time, eod = read_baseline_eod(os.path.join(data_dir, dataset))
# read spikes during baseline activity
spikes = read_baseline_spikes(os.path.join(data_dir, dataset))
# calculate interpike intervals and plot them
interspikeintervals = np.diff(spikes)
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.0001), color='royalblue')
plt.xlabel("time [ms]", fontsize = 22)
plt.xticks(fontsize = 18)
plt.ylabel("number of \n interspikeintervals", fontsize = 22)
plt.yticks(fontsize = 18)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
fig.tight_layout()
plt.show()
#plt.show()
<<<<<<< HEAD
#plt.savefig('isis.pdf')
exit()
=======
plt.savefig('isis.png')
>>>>>>> b9573c65638c8a716e57d75fbe550f0a1ef8859f
# calculate coefficient of variation
mu = np.mean(interspikeintervals)
sigma = np.std(interspikeintervals)
cv = sigma/mu
print(cv)
# calculate eod times and indices by zero crossings
threshold = 0
shift_eod = np.roll(eod, 1)
eod_times = time[(eod >= threshold) & (shift_eod < threshold)]
sampling_rate = 40000.0
eod_idx = eod_times*sampling_rate
# align eods and spikes to eods
max_cut = int(np.max(np.diff(eod_idx)))
eod_cuts = np.zeros([len(eod_idx)-1, max_cut])
spike_times = []
eod_durations = []
for i, idx in enumerate(eod_idx[:-1]):
eod_cut = eod[int(idx):int(eod_idx[i+1])]
eod_cuts[i, :len(eod_cut)] = eod_cut
eod_cuts[i, len(eod_cut):] = np.nan
time_cut = time[int(idx):int(eod_idx[i+1])]
spike_cut = spikes[(spikes > time_cut[0]) & (spikes < time_cut[-1])]
spike_time = spike_cut - time_cut[0]
if len(spike_time) > 0:
spike_times.append(spike_time[:][0]*1000)
eod_durations.append(len(eod_cut)/sampling_rate*1000)
# calculate vector strength
vs = vector_strength(spike_times, eod_durations)
# determine means and stds of eod for plot
# determine time axis
mu_eod = np.nanmean(eod_cuts, axis=0)
std_eod = np.nanstd(eod_cuts, axis=0)*3
time_axis = np.arange(max_cut)/sampling_rate*1000
# plot eod form and spike histogram
fig, ax1 = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
ax1.hist(spike_times, color='firebrick')
ax1.set_xlabel('time [ms]', fontsize=22)
ax1.set_ylabel('number', fontsize=22)
ax1.tick_params(axis='y', labelcolor='firebrick')
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
ax1.spines['top'].set_visible(False)
ax2 = ax1.twinx()
ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='navy', alpha=0.5)
ax2.plot(time_axis, mu_eod, color='black', lw=2)
ax2.set_ylabel('voltage [mV]', fontsize=22)
ax2.tick_params(axis='y', labelcolor='navy')
ax2.spines['top'].set_visible(False)
plt.yticks(fontsize=18)
fig.tight_layout()
#plt.show()
plt.savefig('eodform_spikehist.png')