gp_neurobio/code/spikes_analysis.py
2018-11-19 17:12:09 +01:00

70 lines
2.0 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
from read_chirp_data import *
from utility import *
from IPython import embed
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
eod = read_chirp_eod(os.path.join(data_dir, dataset))
chirp_times = read_chirp_times(os.path.join(data_dir, dataset))
df_map = {}
for k in spikes.keys():
df = k[1]
if df in df_map.keys():
df_map[df].append(k)
else:
df_map[df] = [k]
# make phases together, 12 phases
phase_vec = np.arange(0, 1+1/12, 1/12)
phase_mat_df = {}
for deltaf in df_map.keys():
phase_df = {}
for rep in df_map[deltaf]:
for phase in spikes[rep]:
#print(phase)
for idx in range(len(phase_vec)-1):
if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]:
if phase_vec[idx] in phase_df.keys():
phase_df[phase_vec[idx]].append(phase)
else:
phase_df[phase_vec[idx]] = [phase]
#spikes_one_chirp = spikes[rep][phase]
phase_mat_df[deltaf] = phase_df
#df_spikes = spikes[df_map['-50Hz'][0]]
#phase_spikes = df_spikes[phase_mat_df['-50Hz'][0.0][0]]
trial_spikes = np.asarray(spikes[(0, '-50Hz', '20%', '100Hz')][(0, 0.789)])
plot_spikes = trial_spikes[(trial_spikes < 50.0) & (trial_spikes > -50.0)]
hist_data = plt.hist(plot_spikes, color='w')
fig, ax = plt.subplots()
ax.scatter(plot_spikes, np.ones(len(plot_spikes))*10, marker='|', color='k')
ax.plot(hist_data[1][:-1], hist_data[0])
plt.show()
#mu = 1
#sigma = 1
#time_gauss = np.arange(-4, 4, 1)
#gauss = gaussian(time_gauss, mu, sigma)
# spikes during time vec (00010000001)?
#smoothed_spikes = np.convolve(plot_spikes, gauss, 'same')
#window = np.mean(np.diff(plot_spikes))
#time_vec = np.arange(plot_spikes[0], plot_spikes[-1]+window, window)
#ax.plot(time_vec, smoothed_spikes)
#embed()
#exit()
#hist_data = plt.hist(plot_spikes, bins=np.arange(-200, 400, 20))
#ax.plot(hist_data[1][:-1], hist_data[0])