gp_neurobio/code/eod_freq_normal.py
2018-11-22 15:21:47 +01:00

57 lines
1.3 KiB
Python

from read_baseline_data import *
from IPython import embed
import matplotlib.pyplot as plt
import numpy as np
data_dir = '../data'
dataset = '2018-11-09-ad-invivo-1'
# read eod and time of baseline
time, eod = read_baseline_eod(os.path.join(data_dir, dataset))
eod_norm = eod - np.mean(eod)
# calculate eod times and indices by zero crossings
threshold = 0
shift_eod = np.roll(eod_norm, 1)
eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)]
## normal
eod_freq_normal = 1/np.diff(eod_times)
kernel = np.ones(7)/7
smooth_eod_freq_normal = np.convolve(eod_freq_normal, kernel, mode = 'valid')
time_axis = np.arange(len(smooth_eod_freq_normal))
#print(eod_freq)
#print(smooth_eod_freq)
fig = plt.plot(time_axis,smooth_eod_freq_normal, linewidth = 2.0)
plt.xlabel("time [ms]", fontsize = 14)
plt.xticks(fontsize = 12)
plt.ylabel("eod frequency [mV]", fontsize = 14)
plt.yticks(fontsize = 12)
plt.axis([0, len(time_axis), 0, 1000])
plt.show()
## beat
#x = np.arange(0, len(time_axis, 0.000001) # Start, Stop, Step
#y = np.sin(x * 2* np.pi * 600)
#plt.plot(x, y)
#plt.show()
#eod_freq_beat = eod_freq_normal + np.sin(x * 2* np.pi * 600)
#smooth_eod_freq_beat = np.convolve(eod_freq_beat, kernel, mode = 'valid')
#fig = plt.plot(time_axis,smooth_eod_freq_beat)
#plt.xlabel("time [ms]")
#plt.ylabel("eod frequency [mV]")
#plt.show()