gp_neurobio/code/spikes_analysis.py
2018-11-21 15:54:29 +01:00

105 lines
3.7 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
from read_chirp_data import *
from utility import *
from IPython import embed
# define sampling rate and data path
sampling_rate = 40 #kHz
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
# parameters for binning, smoothing and plotting
num_bin = 12
window = 1
time_axis = np.arange(-50, 50, 1/sampling_rate)
bin_size = 1
spike_bins = np.arange(-50, 50+bin_size, bin_size)
# read data from files
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
eod = read_chirp_eod(os.path.join(data_dir, dataset))
chirp_times = read_chirp_times(os.path.join(data_dir, dataset))
# make a delta f map for the quite more complicated keys
df_map = {}
for k in spikes.keys():
df = k[1]
if df in df_map.keys():
df_map[df].append(k)
else:
df_map[df] = [k]
# differentiate between phases
phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin)
cut_range = np.arange(-50*sampling_rate, 50*sampling_rate, 1)
# make dictionaries for spiketimes
df_phase_time = {}
df_phase_binary = {}
# iterate over delta f, repetition, phases and a single chirp
for deltaf in df_map.keys():
df_phase_time[deltaf] = {}
df_phase_binary[deltaf] = {}
for rep in df_map[deltaf]:
for phase in spikes[rep]:
for idx in np.arange(num_bin):
# check the phase
if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]:
# get spikes between 50 ms befor and after the chirp
spikes_to_cut = np.asarray(spikes[rep][phase])
spikes_cut = spikes_to_cut[(spikes_to_cut > -50) & (spikes_to_cut < 50)]
spikes_idx = np.round(spikes_cut*sampling_rate)
# also save as binary, 0 no spike, 1 spike
binary_spikes = np.isin(cut_range, spikes_idx)*1
# add the spikes to the dictionaries with the correct df and phase
if idx in df_phase_time[deltaf].keys():
df_phase_time[deltaf][idx].append(spikes_cut)
df_phase_binary[deltaf][idx] = np.vstack((df_phase_binary[deltaf][idx], binary_spikes))
else:
df_phase_time[deltaf][idx] = [spikes_cut]
df_phase_binary[deltaf][idx] = binary_spikes
# for plotting and calculating iterate over delta f and phases
for df in df_phase_time.keys():
for phase in df_phase_time[df].keys():
# plot
plot_trials = df_phase_time[df][phase]
plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0)
# calculation
overall_spikerate = (np.sum(plot_trials_binary)/len(plot_trials_binary))*sampling_rate*1000
'''
spike_rate = np.zeros(len(spike_bins)-1)
for idx in range(len(spike_bins)-1):
bin_start = spike_bins[idx]*sampling_rate
bin_end = spike_bins[idx+1]*sampling_rate
spike_rate[idx] = np.sum(plot_trials_binary[bin_start:bin_end])/bin_size*sampling_rate
print(np.std(spike_rate))
plt.plot(spike_rate)
plt.show()
embed()
exit()
'''
smoothed_spikes = smooth(plot_trials_binary, window, 1./sampling_rate)
fig, ax = plt.subplots(2, 1, sharex=True)
for i, trial in enumerate(plot_trials):
ax[0].scatter(trial, np.ones(len(trial))+i, marker='|', color='k')
ax[1].plot(time_axis, smoothed_spikes*1000)
ax[0].set_title(df)
ax[0].set_ylabel('repetition', fontsize=12)
ax[1].set_xlabel('time [ms]', fontsize=12)
ax[1].set_ylabel('firing rate [Hz]', fontsize=12)
print(overall_spikerate)
plt.show()