gp_neurobio/code/response_beat.py
2018-11-29 17:06:17 +01:00

117 lines
4.0 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
from read_chirp_data import *
from read_baseline_data import *
from utility import *
from IPython import embed
# define data path and important parameters
data_dir = "../data"
sampling_rate = 40 #kHz
cut_window = 100
cut_range = np.arange(-cut_window * sampling_rate, 0, 1)
window = 1
'''
# norm: -150, 150, 300 aa, #ac, aj??
data = ["2018-11-13-aa-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1",
"2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1"]
# norm: -50
data = ["2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1","2018-11-20-ad-invivo-1",
"2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1",
"2018-11-20-ai-invivo-1"]
'''
data = ["2018-11-14-ad-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-am-invivo-1"]
#data = ["2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ak-invivo-1"]
#data = ["2018-11-09-ad-invivo-1", "2018-11-14-af-invivo-1"]
#data = ["2018-11-20-ad-invivo-1", "2018-11-13-ad-invivo-1"]
#data = ["2018-11-09-ad-invivo-1"]
rates = {}
for dataset in data:
rates[dataset] = {}
print(dataset)
# read baseline spikes
base_spikes = read_baseline_spikes(os.path.join(data_dir, dataset))
base_spikes = base_spikes[1000:2000]
spikerate = len(base_spikes)/base_spikes[-1]
print(spikerate)
# read spikes during chirp stimulation
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
df_map = map_keys(spikes)
# iterate over df
for df in df_map.keys():
'''
if df == 50:
pass
else:
continue
'''
#print(df)
rep_rates = []
beat_duration = int(abs(1 / df) * 1000)
beat_window = 0
while beat_window + beat_duration <= cut_window/2:
beat_window = beat_window + beat_duration
for rep in df_map[df]:
for phase in spikes[rep]:
# get spikes 40 ms before the chirp first chirp
spikes_to_cut = np.asarray(spikes[rep][phase])
spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < 0)]
spikes_idx = np.round(spikes_cut * sampling_rate)
# also save as binary, 0 no spike, 1 spike
binary_spikes = np.isin(cut_range, spikes_idx) * 1
smoothed_data = smooth(binary_spikes, window, 1 / sampling_rate)
#train = smoothed_data[window:beat_window+window]
#norm_train = train*1000/spikerate
#df_rate = np.std(norm_train)
#rates[dataset][df] = [df_rate]
rep_rates.append(np.std(smoothed_data))#/spikerate)
'''
if df in rates[dataset].keys():
rates[dataset][df].append(np.std(norm_train))
else:
rates[dataset][df] = [np.std(norm_train)]
'''
break
#break
df_rate = np.mean(rep_rates)
#df_rate = rep_rates
rates[dataset][df] = df_rate
#embed()
#exit()
'''
if df in rates.keys():
rates[dataset][df].append(df_rate)
else:
rates[dataset][df] = [df_rate]
'''
colors = ['royalblue', 'red', 'green', 'violet', 'orange', 'black', 'gray']
fig, ax = plt.subplots()
for i, cell in enumerate(rates.keys()):
for j, df in enumerate(sorted(rates[cell].keys())):
ax.plot(df, rates[cell][df], 'o', color=colors[i])
#ax.legend(sorted(rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
fig.tight_layout()
plt.show()
'''
fig, ax = plt.subplots()
for i, cell in enumerate(rates.keys()):
for j, df in enumerate(sorted(rates[cell].keys())):
ax.plot(np.ones(len(rates[cell][df]))*df, rates[cell][df], 'o', color=colors[i])
#ax.legend(sorted(rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
fig.tight_layout()
plt.show()
'''