95 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			95 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from read_baseline_data import *
 | |
| from read_chirp_data import *
 | |
| from func_spike import *
 | |
| import matplotlib.pyplot as plt
 | |
| import numpy as np
 | |
| from IPython import embed #Funktionen importieren
 | |
| 
 | |
| 
 | |
| 
 | |
| data_dir = "../data"
 | |
| data_base = ("2018-11-09-ab-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-af-invivo-1", "2018-11-13-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1",  "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
 | |
| data_chirps = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1") 
 | |
| 
 | |
| dataset = "2018-11-14-al-invivo-1"
 | |
| 
 | |
| 
 | |
| #for dataset in data_base:
 | |
| 
 | |
| spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))	
 | |
| spike_iv = np.diff(spike_times)
 | |
| x = np.arange(0.001, 0.01, 0.0001)
 | |
| plt.hist(spike_iv,x)
 | |
| 
 | |
| mu = np.mean(spike_iv)
 | |
| sigma = np.std(spike_iv)
 | |
| cv = sigma/mu
 | |
| 
 | |
| plt.title('A.lepto ISI Histogramm', fontsize = 14)
 | |
| plt.xlabel('duration ISI[ms]', fontsize = 12)
 | |
| plt.ylabel('number of ISI', fontsize = 12)
 | |
| 
 | |
| plt.xticks(fontsize = 12)
 | |
| plt.yticks(fontsize = 12)
 | |
| plt.show()
 | |
| 
 | |
| 
 | |
| 
 | |
| #for dataset in data_chirps:
 | |
| 
 | |
| 	#Nyquist-Theorem Plot:
 | |
| chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
 | |
| times = read_chirp_times(os.path.join(data_dir, dataset))
 | |
| eod = read_chirp_eod(os.path.join(data_dir, dataset))
 | |
| df_map = map_keys(chirp_spikes)
 | |
| sort_df = sorted(df_map.keys())
 | |
| 
 | |
| dct_rate, over_r = spike_rates(sort_df, df_map, chirp_spikes)
 | |
| 
 | |
| plt.figure()
 | |
| ls_mean = plot_df_spikes(sort_df, dct_rate)
 | |
| plt.show()
 | |
| 
 | |
| 
 | |
| 
 | |
| 	#mittlere Feuerrate einer Frequenz auf Frequenz:
 | |
| 
 | |
| plt.figure()
 | |
| plt.plot(np.arange(0,len(ls_mean),1),ls_mean)
 | |
| plt.scatter(np.arange(0,len(ls_mean),1), np.ones(len(ls_mean))*over_r)
 | |
| plt.title('Mean firing rate of a cell for a range of frequency differences')
 | |
| plt.xticks(np.arange(1,len(sort_df),1), (sort_df))
 | |
| plt.xlabel('Range of frequency differences [Hz]')
 | |
| plt.ylabel('Mean firing rate of the cell')
 | |
| plt.show()
 | |
| 
 | |
| 
 | |
| 
 | |
| 	#Adaption der Zellen:
 | |
| 	#wie viel Prozent der Anfangsrate macht die Adaption von Zellen aus?
 | |
| 
 | |
| adapt = adaptation_df(sort_df, dct_rate)
 | |
| plt.figure()
 | |
| plt.boxplot(adapt)
 | |
| plt.title('Adaptation of cell firing rate during a trial')
 | |
| plt.xlabel('Cell')
 | |
| plt.ylabel('Adaptation size [Hz]')
 | |
| plt.show()	
 | |
| 
 | |
| 
 | |
| 
 | |
| '''
 | |
| 
 | |
| 	#Vatriablen speichern, die man für die Übersicht aller Zellen braucht
 | |
| 	name = str(dataset.replace('-invivo-1', ''))
 | |
| 	f = open('../results/Nyquist/Ny_' + name + '.txt' , 'w') 
 | |
| 	f.write(str(sort_df)) 
 | |
| 	f.write(str(df_map)) 
 | |
| 	f.write(str(chirp_spikes)) 
 | |
| 	f.write(str(times))
 | |
| 	f.write(str(ls_mean))
 | |
| 	f.write(str(over_r)) 
 | |
| 	f.write(str(adapt))
 | |
| 	f.close() 
 | |
| '''
 |