40 lines
1010 B
Python
40 lines
1010 B
Python
from read_baseline_data import *
|
|
from IPython import embed
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
## beat
|
|
|
|
data_dir = '../data'
|
|
dataset = '2018-11-09-ad-invivo-1'
|
|
|
|
time, eod = read_baseline_eod(os.path.join(data_dir, dataset))
|
|
eod_norm = eod - np.mean(eod)
|
|
|
|
# calculate eod times and indices by zero crossings
|
|
threshold = 0
|
|
shift_eod = np.roll(eod_norm, 1)
|
|
eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)]
|
|
|
|
#x = eod_times*40000
|
|
x = np.arange(0., len(eod_times)-1)
|
|
y = np.sin(x*2*np.pi*600)
|
|
eod_freq_beat = 1/(np.diff(eod_times) + y)
|
|
|
|
# glätten
|
|
kernel = np.ones(7)/7
|
|
smooth_eod_freq_beat = np.convolve(eod_freq_beat, kernel, mode = 'valid')
|
|
time_axis = np.arange(len(smooth_eod_freq_beat))
|
|
|
|
plt.plot(time_axis, smooth_eod_freq_beat)
|
|
plt.show()
|
|
|
|
|
|
#eod_freq_beat = eod_freq_normal + y
|
|
#smooth_eod_freq_beat = np.convolve(eod_freq_beat, kernel, mode = 'valid')
|
|
#fig = plt.plot(time_axis,smooth_eod_freq_beat)
|
|
#plt.xlabel("time [ms]")
|
|
#plt.ylabel("eod frequency [mV]")
|
|
#plt.show()
|
|
|