gp_neurobio/code/base_chirps.py
2018-11-28 17:30:08 +01:00

63 lines
2.2 KiB
Python

from read_chirp_data import *
from func_chirp import *
from utility import *
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed
data_dir = "../data"
dataset = "2018-11-13-ah-invivo-1"
data = ["2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1"]
#for dataset in data:
eod = read_chirp_eod(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
df_map = map_keys(eod)
sort_df = sorted(df_map.keys())
eods = chirp_eod_plot(df_map, eod, times)
plt.show()
plt.close('all')
chirp_mods = {}
beat_mods = []
for i in sort_df:
chirp_mods[i] = []
freq = list(df_map[i])
ls_mod, beat_mod = cut_chirps(freq, eod, times)
chirp_mods[i].append(ls_mod)
beat_mods.append(beat_mod)
#Chirps einer Phase zuordnen - zusammen plotten
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
sort_df = sorted(df_map.keys())
dct_phase = plot_std_chirp(sort_df, df_map, chirp_spikes, chirp_mods)
plt.show()
plt.close('all')
'''
#Vatriablen speichern, die man für die Übersicht aller Zellen braucht
name = str(dataset.replace('-invivo-1', ''))
print('saving ../results/Chirpcut/Cc_' + name + '.dat')
f = open('../results/Chirpcut/Cc_' + name + '.dat' , 'w')
f.write(str(sort_df))
f.write(str(df_map))
f.write(str(chirp_spikes))
f.write(str(eod))
f.write(str(times))
#f.write(str(chirp_mods))
#f.write(str(beat_mods))
f.close()
'''