gp_neurobio/code/read_chirp_data.py

97 lines
3.2 KiB
Python

import numpy as np
import os
from IPython import embed
def load_chirp_spikes(dataset):
spikes_file = os.path.join(dataset, "chirpspikess1.dat")
if not os.path.exists(spikes_file):
print("found no chirps!")
return {}
with open(spikes_file, 'r') as f:
lines = f.readlines()
spikes = {}
for l in lines:
l = l.strip()
if "index" in l and "chirp" not in l:
index = int(l.split(":")[-1])
if "deltaf" in l and "true" not in l:
df = l.split(":")[-1]
if "contrast" in l and "true" not in l:
contrast = l.split(":")[-1]
if "chirpsize" in l:
cs = l.split(":")[-1]
if "#Key" in l:
spikes[(index, df, contrast, cs)] = {}
if "chirp index" in l:
ci = int(l.split(":")[-1])
if "beat phase" in l:
phase = float(l.split(":")[-1])
spikes[(index, df, contrast, cs)][(ci, phase)] = []
if len(l.strip()) != 0 and "#" not in l:
spikes[(index, df, contrast, cs)][(ci, phase)].append(float(l))
return spikes
def load_chirp_eod(dataset):
eod_file = os.path.join(dataset, "chirpeodampls.dat")
if not os.path.exists(eod_file):
print("found no chirpeodampls.dat!")
return {}
with open(eod_file, 'r') as f:
lines = f.readlines()
chirp_eod = {}
for l in lines:
l = l.strip()
if "index" in l and "chirp" not in l:
index = int(l.split(":")[-1])
if "deltaf" in l and "true" not in l:
df = l.split(":")[-1]
if "contrast" in l and "true" not in l:
contrast = l.split(":")[-1]
if "chirpsize" in l:
cs = l.split(":")[-1]
if "#Key" in l:
chirp_eod[(index, df, contrast, cs)] = ([], [])
if len(l.strip()) != 0 and "#" not in l:
time = float(l.split()[0])
ampl = float(l.split()[1])
chirp_eod[(index, df, contrast, cs)][0].append(time)
chirp_eod[(index, df, contrast, cs)][1].append(ampl)
return chirp_eod
def load_chirp_times(dataset):
chirp_times_file = os.path.join(dataset, "chirpss.dat")
if not os.path.exists(chirp_times_file):
print("found no chirpss.dat!")
return {}
with open(chirp_times_file, 'r') as f:
lines = f.readlines()
chirp_times = {}
for l in lines:
l = l.strip()
if "index" in l and "chirp" not in l:
index = int(l.split(":")[-1])
if "deltaf" in l and "true" not in l:
df = l.split(":")[-1]
if "contrast" in l and "true" not in l:
contrast = l.split(":")[-1]
if "chirpsize" in l:
cs = l.split(":")[-1]
if "#Key" in l:
chirp_times[(index, df, contrast, cs)] = []
if len(l.strip()) != 0 and "#" not in l:
chirp_times[(index, df, contrast, cs)].append(float(l.split()[1]))
return chirp_times
if __name__ == "__main__":
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
spikes = load_chirp_spikes(os.path.join(data_dir, dataset))
chirp_times = load_chirp_times(os.path.join(data_dir, dataset))
chirp_eod = load_chirp_eod(os.path.join(data_dir, dataset))
embed()