from read_chirp_data import * from func_chirp import * from utility import * import matplotlib.pyplot as plt import numpy as np from IPython import embed data_dir = "../data" data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1") for dataset in data: print(dataset) eod = read_chirp_eod(os.path.join(data_dir, dataset)) times = read_chirp_times(os.path.join(data_dir, dataset)) df_map = map_keys(eod) sort_df = sorted(df_map.keys()) chirp_eod_plot(df_map, eod, times) chirp_mods = [] beat_mods = [] for i in sort_df: freq = list(df_map[i]) ls_mod, beat_mod = cut_chirps(freq, eod, times) chirp_mods.append(ls_mod) beat_mods.append(beat_mod) #Chirps einer Phase zuordnen - zusammen plotten chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(chirp_spikes) sort_df = sorted(df_map.keys()) #plot_std_chirp(sort_df, df_map, chirp_spikes, chirp_mods) #Vatriablen speichern, die man für die Übersicht aller Zellen braucht name = str(dataset.strip('invivo-1')) f = open('../results/Chirpcut/Cc_' + name + '.dat' , 'w') f.write(str(sort_df)) f.write(str(df_map)) f.write(str(chirp_spikes)) f.write(str(eod)) f.write(str(times)) #f.write(str(chirp_mods)) #f.write(str(beat_mods)) f.close()