from read_baseline_data import * from read_chirp_data import * from func_spike import * import matplotlib.pyplot as plt import numpy as np from IPython import embed #Funktionen imposrtieren data_dir = "../data" data_base = ("2018-11-09-ab-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-af-invivo-1", "2018-11-13-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1") data_chirps = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1") ''' for dataset in data_base: print(dataset) spike_times = read_baseline_spikes(os.path.join(data_dir, dataset)) spike_iv = np.diff(spike_times) x = np.arange(0.001, 0.01, 0.0001) plt.hist(spike_iv,x) mu = np.mean(spike_iv) sigma = np.std(spike_iv) cv = sigma/mu plt.title('A.lepto ISI Histogramm', fontsize = 14) plt.xlabel('duration ISI[ms]', fontsize = 12) plt.ylabel('number of ISI', fontsize = 12) plt.xticks(fontsize = 12) plt.yticks(fontsize = 12) ''' for dataset in data_chirps: #Nyquist-Theorem Plot: print(dataset) chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) times = read_chirp_times(os.path.join(data_dir, dataset)) eod = read_chirp_eod(os.path.join(data_dir, dataset)) df_map = map_keys(chirp_spikes) sort_df = sorted(df_map.keys()) dct_rate, over_r = spike_rates(sort_df, df_map, chirp_spikes) plt.figure() ls_mean = plot_df_spikes(sort_df, dct_rate) #mittlere Feuerrate einer Frequenz auf Frequenz: plt.figure() plt.plot(np.arange(0,len(ls_mean),1),ls_mean) plt.scatter(np.arange(0,len(ls_mean),1), np.ones(len(ls_mean))*over_r) plt.title('Mean firing rate of a cell for a range of frequency differences') plt.xticks(np.arange(1,len(sort_df),1), (sort_df)) plt.xlabel('Range of frequency differences [Hz]') plt.ylabel('Mean firing rate of the cell') #Adaption der Zellen: #wie viel Prozent der Anfangsrate macht die Adaption von Zellen aus? adapt = adaptation_df(sort_df, dct_rate) plt.figure() plt.boxplot(adapt) plt.title('Adaptation of cell firing rate during a trial') plt.xlabel('Cell') plt.ylabel('Adaptation size [Hz]') #Vatriablen speichern, die man für die Übersicht aller Zellen braucht name = str(dataset.strip('invivo-1')) f = open('../results/Nyquist/Ny_' + name + '.txt' , 'w') f.write(str(sort_df)) f.write(str(df_map)) f.write(str(chirp_spikes)) f.write(str(times)) f.write(str(ls_mean)) f.write(str(over_r)) f.write(str(adapt)) f.close()