from read_baseline_data import * from IPython import embed import matplotlib.pyplot as plt import numpy as np ## beat data_dir = '../data' dataset = '2018-11-09-ad-invivo-1' time, eod = read_baseline_eod(os.path.join(data_dir, dataset)) eod_norm = eod - np.mean(eod) # calculate eod times and indices by zero crossings threshold = 0 shift_eod = np.roll(eod_norm, 1) eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)] #x = eod_times*40000 x = np.arange(0., len(eod_times)-1) y = np.sin(x*2*np.pi*600) eod_freq_beat = 1/(np.diff(eod_times) + y) # glätten kernel = np.ones(7)/7 smooth_eod_freq_beat = np.convolve(eod_freq_beat, kernel, mode = 'valid') time_axis = np.arange(len(smooth_eod_freq_beat)) plt.plot(time_axis, smooth_eod_freq_beat) plt.show() #eod_freq_beat = eod_freq_normal + y #smooth_eod_freq_beat = np.convolve(eod_freq_beat, kernel, mode = 'valid') #fig = plt.plot(time_axis,smooth_eod_freq_beat) #plt.xlabel("time [ms]") #plt.ylabel("eod frequency [mV]") #plt.show()