import numpy as np import matplotlib.pyplot as plt from read_baseline_data import * from IPython import embed from NixFrame import * inch_factor = 2.54 data_dir = '../data' dataset = '2018-11-09-ad-invivo-1' time, eod = read_baseline_eod(os.path.join(data_dir, dataset)) #fig = plt.figure(figsize=(12/inch_factor, 8/inch_factor)) #ax = fig.add_subplot(111) #ax.plot(time[:1000], eod[:1000]) #ax.set_xlabel('time [ms]', fontsize=12) #ax.set_ylabel('voltage [mV]', fontsize=12) #plt.xticks(fontsize = 8) #plt.yticks(fontsize = 8) #fig.tight_layout() #plt.savefig('eod.pdf') #interspikeintervalhistogram, windowsize = 1 ms #plt.hist #coefficient of variation #embed() #exit() spikes = read_baseline_spikes(os.path.join(data_dir, dataset)) interspikeintervals = np.diff(spikes) #fig = plt.figure() #plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.0001)) #plt.show() mu = np.mean(interspikeintervals) sigma = np.std(interspikeintervals) cv = sigma/mu #print(cv) # calculate zero crossings of the eod # plot mean of eod circles # plot std of eod circles # plot psth into the same plot # calculate vector strength threshold = 0; shift_eod = np.roll(eod, 1) eod_times = time[(eod >= threshold) & (shift_eod < threshold)] sampling_rate = 40000.0 eod_idx = eod_times*sampling_rate #fig = plt.figure() eod_cuts = []; #for i, idx in enumerate(eod_idx)-1: #eod_cuts.append(eod[int(idx):int(eod_idx[i+1])]) #time_cut = time[int(idx):int(eod_idx[i+1])] #plt.plot(time[int(idx):int(eod_idx[i+1])], eod[int(idx):int(eod_idx[i+1])]) #plt.show() data = NixToFrame(data_dir) embed() exit()