from read_baseline_data import * from read_chirp_data import * from utility import * import matplotlib.pyplot as plt import numpy as np def chirp_eod_plot(df_map, eod, times): #die äußere Schleife geht für alle Keys durch und somit durch alle dfs #die innnere Schleife bildet die 16 Wiederholungen einer Frequenz ab for i in df_map.keys(): freq = list(df_map[i]) fig,axs = plt.subplots(2, 2, sharex = True, sharey = True) for idx, k in enumerate(freq): ct = times[k] e1 = eod[k] zeit = e1[0] eods = e1[1] if idx <= 3: axs[0, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[0, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) elif 4<= idx <= 7: axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) elif 8<= idx <= 11: axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) else: axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) fig.suptitle('EOD for chirps', fontsize = 16) axs[0,0].set_ylabel('Amplitude [mV]') axs[0,1].set_xlabel('Amplitude [mV]') axs[1,0].set_xlabel('Time [ms]') axs[1,1].set_xlabel('Time [ms]') plt.close() def cut_chirps(freq, eod, times): ls_mod = [] ls_beat = [] for k in freq: e1 = eod[k] zeit = np.asarray(e1[0]) ampl = np.asarray(e1[1]) ct = times[k] for chirp in ct: time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)] eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)] beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)] chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp ls_mod.append(chirp_mod) ls_beat.extend(beat_cut) beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp plt.figure() plt.scatter(np.arange(0,len(ls_mod),1), ls_mod) plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))*beat_mod, color = 'violet') plt.close() return(ls_mod, beat_mod) def plot_std_chirp(sort_df, df_map, chirp_spikes, ls_mod): plt.figure() dct_phase = {} num_bin = 12 phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin) for i in sort_df: freq = list(df_map[i]) dct_phase[i] = [] for k in freq: for phase in chirp_spikes[k]: dct_phase[i].append(phase[1]) plt.scatter(dct_phase[i], ls_mod[i]) plt.title('Change of std depending on the phase where the chirp occured') plt.close()