import matplotlib.pyplot as plt import numpy as np from read_chirp_data import * from utility import * from IPython import embed # define sampling rate and data path sampling_rate = 40 #kHz data_dir = "../data" dataset = "2018-11-09-ad-invivo-1" # parameters for binning, smoothing and plotting chirp_size = 14 #ms neuronal_delay = 5 #ms chirp_start = int((-chirp_size/2+neuronal_delay+50)*sampling_rate) chirp_end = int((chirp_size/2+neuronal_delay+51)*sampling_rate) num_bin = 12 window = 1 #ms time_axis = np.arange(-50, 50, 1/sampling_rate) #steps spike_bins = np.arange(-50, 51) #ms # read data from files spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) eod = read_chirp_eod(os.path.join(data_dir, dataset)) chirp_times = read_chirp_times(os.path.join(data_dir, dataset)) # make a delta f map for the quite more complicated keys df_map = {} for k in spikes.keys(): df = k[1] if df in df_map.keys(): df_map[df].append(k) else: df_map[df] = [k] # differentiate between phases phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin) cut_range = np.arange(-50*sampling_rate, 50*sampling_rate, 1) # make dictionaries for spiketimes df_phase_time = {} df_phase_binary = {} # iterate over delta f, repetition, phases and a single chirp for deltaf in df_map.keys(): df_phase_time[deltaf] = {} df_phase_binary[deltaf] = {} for rep in df_map[deltaf]: for phase in spikes[rep]: for idx in np.arange(num_bin): # check the phase if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]: # get spikes between 50 ms befor and after the chirp spikes_to_cut = np.asarray(spikes[rep][phase]) spikes_cut = spikes_to_cut[(spikes_to_cut > -50) & (spikes_to_cut < 50)] spikes_idx = np.round(spikes_cut*sampling_rate) # also save as binary, 0 no spike, 1 spike binary_spikes = np.isin(cut_range, spikes_idx)*1 # add the spikes to the dictionaries with the correct df and phase if idx in df_phase_time[deltaf].keys(): df_phase_time[deltaf][idx].append(spikes_cut) df_phase_binary[deltaf][idx] = np.vstack((df_phase_binary[deltaf][idx], binary_spikes)) else: df_phase_time[deltaf][idx] = [spikes_cut] df_phase_binary[deltaf][idx] = binary_spikes # for plotting and calculating iterate over delta f and phases for df in df_phase_time.keys(): for phase in df_phase_time[df].keys(): trials_binary = df_phase_binary[df][phase] sr_chirp = np.zeros(len(trials_binary)) sr_beat = np.zeros(len(trials_binary)) for i, trial in enumerate(trials_binary): smoothed_trial = smooth(trial, window, 1/sampling_rate) sr_chirp[i] = np.mean(smoothed_trial[chirp_start:chirp_end]) sr_beat[i] = np.mean(smoothed_trial[0:chirp_start]) for rate_chirp in sr_chirp: for rate_beat in sr_beat: r = np.corrcoef(rate_chirp, rate_beat) print(r) embed() exit() #csi = (spikerate_chirp-spikerate_befor)/(spikerate_chirp+spikerate_befor) # plot #plot_trials = df_phase_time[df][phase] #plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0) # calculation #overall_spikerate = (np.sum(plot_trials_binary)/len(plot_trials_binary))*sampling_rate*1000 ''' smoothed_spikes = smooth(plot_trials_binary, window, 1./sampling_rate) fig, ax = plt.subplots(2, 1, sharex=True) for i, trial in enumerate(plot_trials): ax[0].scatter(trial, np.ones(len(trial))+i, marker='|', color='k') ax[1].plot(time_axis, smoothed_spikes*1000) ax[0].set_title(df) ax[0].set_ylabel('repetition', fontsize=12) ax[1].set_xlabel('time [ms]', fontsize=12) ax[1].set_ylabel('firing rate [Hz]', fontsize=12) plt.show() ''' ''' for trial in range(len(trials_binary)): spike_rate = np.zeros(len(spike_bins)-1) for idx in range(len(spike_bins)-1): bin_start = spike_bins[idx]*sampling_rate bin_end = spike_bins[idx+1]*sampling_rate spike_rate[idx] = np.sum(trials_binary[trial][bin_start:bin_end]) embed() exit() '''