from read_baseline_data import * from read_chirp_data import * from utility import * import matplotlib.pyplot as plt import numpy as np def chirp_eod_plot(df_map, eod, times): #die äußere Schleife geht für alle Keys durch und somit durch alle dfs #die innnere Schleife bildet die 16 Wiederholungen einer Frequenz ab for i in df_map.keys(): freq = list(df_map[i]) fig,axs = plt.subplots(2, 2, sharex = True, sharey = True) for idx, k in enumerate(freq): ct = times[k] e1 = eod[k] zeit = e1[0] eods = e1[1] if idx <= 3: axs[0, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[0, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) elif 4<= idx <= 7: axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) elif 8<= idx <= 11: axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) else: axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) fig.suptitle('EOD for chirps', fontsize = 16) axs[0,0].set_ylabel('Amplitude [mV]') axs[0,1].set_xlabel('Amplitude [mV]') axs[1,0].set_xlabel('Time [ms]') axs[1,1].set_xlabel('Time [ms]') plt.show()