from read_chirp_data import * from func_chirp import * from utility import * import matplotlib.pyplot as plt import numpy as np from IPython import embed data_dir = "../data" dataset = "2018-11-09-ad-invivo-1" #data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1","2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1") #for dataset in data: eod = read_chirp_eod(os.path.join(data_dir, dataset)) times = read_chirp_times(os.path.join(data_dir, dataset)) df_map = map_keys(eod) chirp_eod_plot(df_map, eod, times) plt.close() #ACHTUNG: df für beide Plots anpassen! #momentan per Hand durch alle Frequenzen freq = list(df_map[-100]) ls_mod = [] ls_beat = [] for k in freq: e1 = eod[k] zeit = np.asarray(e1[0]) ampl = np.asarray(e1[1]) ct = times[k] for chirp in ct: time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)] eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)] beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)] chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp ls_mod.append(chirp_mod) ls_beat.extend(beat_cut) beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp plt.figure() plt.scatter(np.arange(0,len(ls_mod),1), ls_mod) plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))*beat_mod, color = 'violet') plt.close() #Chirps einer Phase zuordnen - zusammen plotten dct_phase = {} chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(chirp_spikes) sort_df = sorted(df_map.keys()) num_bin = 12 phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin) for i in sort_df: freq = list(df_map[i]) dct_phase[i] = [] for k in freq: for phase in chirp_spikes[k]: dct_phase[i].append(phase[1]) plt.figure() plt.scatter(dct_phase[-100], ls_mod) plt.title('Change of std depending on the phase where the chirp occured') plt.show()