import matplotlib.pyplot as plt import numpy as np from read_chirp_data import * from utility import * from IPython import embed # define sampling rate and data path sampling_rate = 40 #kHz data_dir = "../data" dataset = "2018-11-13-al-invivo-1" # parameters for binning, smoothing and plotting cut_window = 20 chirp_duration = 14 #ms neuronal_delay = 5 #ms chirp_start = int((-chirp_duration / 2 + neuronal_delay + cut_window * 2) * sampling_rate) #index chirp_end = int((chirp_duration / 2 + neuronal_delay + cut_window * 2) * sampling_rate) #index number_bins = 12 window = 1 #ms time_axis = np.arange(-cut_window*2, cut_window*2, 1/sampling_rate) #steps spike_bins = np.arange(-cut_window*2, cut_window*2) #ms colors = ['k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'firebrick'] sizes = [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 18] # differentiate between phases phase_vec = np.arange(0, 1 + 1 / number_bins, 1 / number_bins) cut_range = np.arange(-cut_window*2*sampling_rate, cut_window*2*sampling_rate, 1) df_phase_binary = {} spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(spikes) for deltaf in df_map.keys(): df_phase_binary[deltaf] = {} for rep in df_map[deltaf]: chirp_size = int(rep[-1].strip('Hz')) if chirp_size == 150: continue for phase in spikes[rep]: for idx in np.arange(number_bins): # check the phase if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]: # get spikes between 40 ms before and after the chirp spikes_to_cut = np.asarray(spikes[rep][phase]) spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window*2) & (spikes_to_cut < cut_window*2)] spikes_idx = np.round(spikes_cut*sampling_rate) # save as binary, 0 no spike, 1 spike binary_spikes = np.isin(cut_range, spikes_idx)*1 # add the spikes to the dictionary with the correct df and phase if idx in df_phase_binary[deltaf].keys(): df_phase_binary[deltaf][idx] = np.vstack((df_phase_binary[deltaf][idx], binary_spikes)) else: df_phase_binary[deltaf][idx] = binary_spikes csi_rates = {} for df in df_phase_binary.keys(): csi_rates[df] = {} beat_duration = int(abs(1/df*1000)*sampling_rate) #steps beat_window = 0 # beat window is at most 20 ms long, multiples of beat_duration while beat_window+beat_duration <= cut_window*sampling_rate: beat_window = beat_window+beat_duration for phase in df_phase_binary[df].keys(): # csi calculation trials_binary = df_phase_binary[df][phase] train_chirp = [] train_beat = [] for i, trial in enumerate(trials_binary): smoothed_trial = smooth(trial, window, 1/sampling_rate) train_chirp.append(smoothed_trial[chirp_start:chirp_end]) train_beat.append(smoothed_trial[chirp_start-beat_window:chirp_start]) std_chirp = np.std(np.mean(train_chirp, axis=0)) std_beat = np.std(np.mean(train_beat, axis=0)) csi_spikerate = (std_chirp - std_beat) / (std_chirp + std_beat) csi_rates[df][phase] = np.mean(csi_spikerate) upper_limit = np.max(sorted(csi_rates.keys()))+30 lower_limit = np.min(sorted(csi_rates.keys()))-30 inch_factor = 2.54 fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor)) ax.plot([lower_limit, upper_limit], np.zeros(2), 'silver', linewidth=2, linestyle='--') for i, df in enumerate(sorted(csi_rates.keys())): for j, phase in enumerate(sorted(csi_rates[df].keys())): ax.plot(df, csi_rates[df][phase], 'o', color=colors[j], ms=sizes[j]) plt.xlabel("$\Delta$f", fontsize = 22) plt.xticks(fontsize = 18) plt.ylabel("CSI", fontsize = 22) plt.yticks(fontsize = 18) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) fig.tight_layout() #plt.show() plt.savefig('CSI.png')