import numpy as np import matplotlib.pyplot as plt from read_baseline_data import * from NixFrame import * from utility import * from IPython import embed # plot and data values inch_factor = 2.54 sampling_rate = 40000 data_dir = '../data' dataset = '2018-11-09-ad-invivo-1' #dataset = '2018-11-14-ad-invivo-1' # read eod and time of baseline time, eod = read_baseline_eod(os.path.join(data_dir, dataset)) eod_norm = eod - np.mean(eod) # calculate eod times and indices by zero crossings threshold = 0 shift_eod = np.roll(eod_norm, 1) eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)] eod_duration = eod_times[2]- eod_times[1] #time in s # read spikes during baseline activity spikes = read_baseline_spikes(os.path.join(data_dir, dataset)) #spikes in s # calculate interpike intervals and plot them interspikeintervals = np.diff(spikes)/eod_duration fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor)) plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.1), color='darkblue') plt.xlabel("EOD cycles", fontsize = 22) plt.xticks(fontsize = 18) plt.ylabel("Number of \n interspikeintervals", fontsize = 22) plt.yticks(fontsize = 18) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) fig.tight_layout() #plt.show() plt.savefig('isis.pdf') #plt.savefig('isis.png') # calculate coefficient of variation mu = np.mean(interspikeintervals) sigma = np.std(interspikeintervals) cv = sigma/mu print(cv) # calculate eod times and indices by zero crossings threshold = 0 shift_eod = np.roll(eod, 1) eod_times = time[(eod >= threshold) & (shift_eod < threshold)] sampling_rate = 40000.0 eod_idx = eod_times*sampling_rate # align eods and spikes to eods max_cut = int(np.max(np.diff(eod_idx))) eod_cuts = np.zeros([len(eod_idx)-1, max_cut]) spike_times = [] eod_durations = [] for i, idx in enumerate(eod_idx[:-1]): eod_cut = eod[int(idx):int(eod_idx[i+1])] eod_cuts[i, :len(eod_cut)] = eod_cut eod_cuts[i, len(eod_cut):] = np.nan time_cut = time[int(idx):int(eod_idx[i+1])] spike_cut = spikes[(spikes > time_cut[0]) & (spikes < time_cut[-1])] spike_time = spike_cut - time_cut[0] if len(spike_time) > 0: spike_times.append(spike_time[:][0]*1000) eod_durations.append(len(eod_cut)/sampling_rate*1000) # calculate vector strength vs = vector_strength(spike_times, eod_durations) # determine means and stds of eod for plot # determine time axis mu_eod = np.nanmean(eod_cuts, axis=0) std_eod = np.nanstd(eod_cuts, axis=0)*3 time_axis = np.arange(max_cut)/sampling_rate*1000 # plot eod form and spike histogram fig, ax1 = plt.subplots(figsize=(20/inch_factor, 10/inch_factor)) ax1.hist(spike_times, color='firebrick') ax1.set_xlabel('Time [ms]', fontsize=22) ax1.set_ylabel('Number', fontsize=22) ax1.tick_params(axis='y', labelcolor='firebrick') plt.xticks(fontsize=18) plt.yticks(fontsize=18) ax1.spines['top'].set_visible(False) ax2 = ax1.twinx() ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='darkblue', alpha=0.5) ax2.plot(time_axis, mu_eod, color='black', lw=2) ax2.set_ylabel('Voltage [mV]', fontsize=22) ax2.tick_params(axis='y', labelcolor='darkblue') ax2.spines['top'].set_visible(False) plt.yticks(fontsize=18) fig.tight_layout() #plt.show() plt.savefig('eodform_spikehist.pdf')