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Spike-Frequency Adaptation Separates Transient
Communication Signals from Background Oscillations

Jan Benda, André Longtin, and Len Maler
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Spike-frequency adaptation is a prominent feature of many neurons. However, little is known about its computational role in processing
behaviorally relevant natural stimuli beyond filtering out slow changes in stimulus intensity. Here, we present a more complex example
in which we demonstrate how spike-frequency adaptation plays a key role in separating transient signals from slower oscillatory signals.
We recorded in vivo from very rapidly adapting electroreceptor afferents of the weakly electric fish Apteronotus leptorhynchus. The
firing-frequency response of electroreceptors to fast communication stimuli (“small chirps”) is strongly enhanced compared with the
response to slower oscillations (“beats”) arising from interactions of same-sex conspecifics. We are able to accurately predict the elec-
troreceptor afferent response to chirps and beats, using a recently proposed general model for spike-frequency adaptation. The param-
eters of the model are determined for each neuron individually from the responses to step stimuli. We conclude that the dynamics of the
rapid spike-frequency adaptation is sufficient to explain the data. Analysis of additional data from step responses demonstrates that
spike-frequency adaptation acts subtractively rather than divisively as expected from depressing synapses. Therefore, the adaptation
dynamics is linear and creates a high-pass filter with a cutoff frequency of 23 Hz that separates fast signals from slower changes in input.
A similar critical frequency is seen in behavioral data on the probability of a fish emitting chirps as a function of beat frequency. These
results demonstrate how spike-frequency adaptation in general can facilitate extraction of signals of different time scales, specifically
high-frequency signals embedded in slower oscillations.
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Introduction
Many neurons will respond to the onset of a constant input with
spike-frequency adaptation (i.e., a gradual reduction of the firing
frequency). Neuronal adaptation is believed to underlie the com-
monly observed behavioral habituation of sensory systems to
constant stimulation. There are numerous processes that can
produce spike-frequency adaptation, including both intrinsic
mechanisms and network interactions such as inhibition or syn-
aptic depression. Recently, there has been much attention fo-
cused on possible functional implications of synaptic depression
for computations such as gain control (Abbott et al., 1997), co-
incidence detection (Senn et al., 1998), and decorrelation (Gold-
man et al., 2002). Adaptation induced by slow intrinsic ionic
currents of the spike generator is, however, also commonly ob-
served in neurons and may enhance their response to high-
frequency input (Nelson et al., 1997; French et al., 2001), mask
low-intensity stimuli (Sobel and Tank, 1994; Wang, 1998), in-
duce contrast adaptation (Sanchez-Vives et al., 2000), remove
temporal correlations from the input (Wang et al., 2003), or af-
fect network synchrony and rhythms (Crook et al., 1998; Ermen-

trout et al., 2001; van Vreeswijk and Hansel, 2001; Fuhrmann et
al., 2002). Because adaptation usually operates within complex
neural circuits and on many different time scales (Fairhall et al.,
2001; Baccus and Meister, 2002; Kohn and Whitsel, 2002), it has
been difficult to determine how these different cellular mecha-
nisms contribute to network-level computations [e.g., sensory
adaptation (Chung et al., 2002; Castro-Alamancos, 2004) or con-
trast adaptation (Sanchez-Vives et al., 2000; Fairhall et al., 2001;
Kim and Rieke, 2003) in the visual system]. There are few studies
on the functional role of adaptation or synaptic depression within
a behavioral context (Sobel and Tank, 1994; Cook et al., 2003;
Luksch et al., 2004; Ronacher and Hennig, 2004).

Here, we examine a sensory system that exhibits prominent
spike-frequency adaptation to constant input and in which the
functional role of adaptation can be investigated in the context of
natural and behaviorally relevant stimuli. By means of a detailed
phenomenological characterization of the observed spike-
frequency adaptation, we conclude that the underlying mecha-
nism includes adaptation of spike generation. Furthermore, we
demonstrate that spike-frequency adaptation permits the detec-
tion of transient weak communication signals in the presence of
strong low-frequency signals by enhancing the response to fast-
stimulus components.

The weakly electric fish Apteronotus leptorhynchus (brown
ghost knifefish) generates a quasi-sinusoidal electric organ dis-
charge (EOD) in the 700 –1000 Hz range, the amplitude of which
is encoded in the discharge of fast-adapting electroreceptors (P-
units) (Bastian, 1981; Nelson et al., 1997). The electrosensory

Received Nov. 24, 2004; revised Jan. 21, 2005; accepted Jan. 22, 2005.
This work was supported by a grant from the Canadian Institutes of Health Research to A.L. and L.M. We thank

Joseph Bastian for providing the data for Figure 7D.
Correspondence should be addressed to Dr. Jan Benda, Institute for Theoretical Biology, Humboldt Universität,

Invalidenstrasse 43, 10115 Berlin, Germany. E-mail: j.benda@biologie.hu-berlin.de.
A. Longtin’s present address: Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada.
DOI:10.1523/JNEUROSCI.4795-04.2005

Copyright © 2005 Society for Neuroscience 0270-6474/05/252312-10$15.00/0

2312 • The Journal of Neuroscience, March 2, 2005 • 25(9):2312–2321



system is used for the detection of objects and prey as well as for
communication. In the latter case, the superposition of the elec-
tric fields of two fish results in a beat, an EOD amplitude modu-
lation (AM) with a frequency that is given by the frequency dif-
ference, �f, of the two fish. Low-frequency beats (��f � � 50 Hz)
will evoke EOD modulations termed “chirps”: small chirps are
agonistic communication signals in which the frequency of the
EOD is increased transiently (Zupanc and Maler, 1993).

In this study, we present in vivo recordings from electrorecep-
tors showing that chirps can evoke a response that is significantly
enhanced compared with the response to slower beats. Further-
more, using a recently developed universal model of adaptation
(Benda and Herz, 2003), we successfully predict the firing-
frequency response of electroreceptors to chirps. Thus, under-
standing the dynamics of adaptation is essential for explaining
the measured data. It is the cutoff frequency of the high-pass filter
induced by adaptation that separates slow beats, transmitted with
low gain, from fast chirps that are transmitted with a larger gain.

Materials and Methods
Chirp recordings. For recordings of chirps as shown in Figure 1, fish were
placed in a mesh between the stimulation electrodes. The fish was stim-
ulated with sine waves of different randomly ordered frequencies �12,
�10, . . . , 10, 12 Hz above the fish’s EOD frequency at 20% contrast (10
s long, 20 s pause). The spontaneously emitted chirps were detected as
brief peaks �20 Hz above baseline EOD frequency.

Electrophysiology. Data from nine adult A. leptorhynchus (12–16 cm)
are used in this study. For surgical exposure of the electrosensory lateral
line lobe (ELL), fish were anesthetized (MS-222; Sigma-Aldrich, St.
Louis, MO). After surgery, fish were immobilized (Flaxedil; Sigma) and
transferred into a tank (28°C) where they were respired by a constant
flow of oxygenated water through their mouth. Action potentials from
single P-unit afferents were recorded routinely in vivo with sharp glass
micropipettes (100 M�) that were advanced into the ELL with a piezo-
electric microdrive (Inchworm IW-711; Burleigh, Fishers, NY). The po-
tential between the micropipette and the reference electrode, which was
placed in the fish’s neck muscle, was amplified (Axoprobe 1A; Axon
Instruments, Union City, CA), bandpass filtered (0.45–7 kHz, PC1;
Tucker–Davis Technologies, Alachua, FL), and notch filtered at 60 Hz
and the fish’s EOD frequency (Ultra-Q Pro; Boehringer Mannheim, Wil-
lich, Germany). All experimental protocols were approved by the Uni-
versity of Ottawa Animal Care Committee.

The EOD unperturbed by the stimulus was recorded between the head
and tail of the fish using two vertical carbon rods (11 cm long, 8 mm
diameter). The transdermal voltage constituting the stimulus picked up
by the P-units was estimated by two silver wires coated with nail polish, 1
cm apart, placed perpendicular to the side of the fish. Both EOD voltages
were amplified and low-pass filtered at 5 kHz (2015F; Intronix, Bolton,
Ontario, Canada). Stimuli were attenuated (PA4; TDT), isolated (model
2002; A-M Systems, Carlsborg, WA), and delivered by two stimulation
electrodes (30-cm-long, 8-mm-diameter carbon rods) placed 10 cm on
either side of the fish, parallel to its longitudinal axis. Two classes of
stimuli were used: direct stimuli (sine waves to mimic the EOD of a
second fish) and AMs. For the latter, the AM signal was multiplied with
the fish’s EOD (MT3; TDT). Note that with direct stimulation, the AMs
measured from the EOD peaks are of the same size as the AMs measured
from the EOD troughs: they equal the amplitude of the stimulus. In
contrast, AM stimuli can result in unequally sized AMs if the EOD is
asymmetric (often the peak is wider than the trough).

The extracellular potential, the EOD, the transdermal potential, and
the attenuated stimulus were digitized at 20 kHz with a 12-bit Multi-IO
board (PCI-MIO-16E-4; National Instruments, Austin, TX) on an Intel
Pentium IV 1.8 GHz Linux personal computer. Spike and EOD detec-
tion, stimulus generation and attenuation, and preanalysis of the data
were performed on-line during the experiment within our OEL (Online
Electrophysiology Laboratory) software.

Protocols and data analysis. Identified P-units (Bastian, 1981) were

stimulated with artificial sinusoidal EOD waveforms with frequencies 5,
10, 20, 30, and 60 Hz above the fish’s own EOD frequency, resulting in the
same positive beat frequencies, �f. The amplitude of the artificial EOD
was chosen to be �20% of the amplitude of the fish’s own EOD. Ten
identical chirps were included into each stimulus as a Gaussian increase
in EOD frequency, such that they were separated by at least one complete
beat cycle and would appear at 10 different positions within the beat. The
width of the chirps at 10% height was 14 ms, and their size was 30, 60,
100, 122, or 153 Hz corresponding to phase advances ��C � 0.25, 0.5,
0.8, 1.0, and 1.25 (throughout this report, phases are defined modulo
one). Each such stimulus was presented 10 –20 times. The actual position
of a chirp within the beat was determined by measuring the phase shift
between the stimulus and the fish’s EOD, because even slight changes in
the fish’s EOD frequency make it impossible to accurately predict the
position of the chirp within the beat cycle. Spike trains for the chirps were
then sorted into 10 bins of different beat positions. The firing frequency
was computed as the inverse interspike interval (ISI) averaged over the
trials for every 0.5 ms. We computed the gain in firing frequency as
the maximum modulation depth of the firing-frequency response during
the chirp divided by the modulation depth during the beat. To minimize
noise, we smoothed the firing frequency with a 0.05/��f � wide window
before measuring the modulation depth during the beat. We also com-
puted a gain for the stimulus as the modulation depth of the AM during
the chirp divided by the modulation depth during the beat. The response
gain shown in Figures 5 and 7 is the gain of the firing frequency divided by
the gain of the stimulus. The latter was close to 1 in most cases.

Stimuli for measuring f–I curves were composed of a 100-ms-long pread-
aptation part of amplitude Ipre immediately followed by a 150-ms-long test
stimulus of amplitude I. While holding Ipre fixed, we varied I randomly such
that each I was presented 6–16 times. The cells completely adapted to the
preadaptation stimulus. Therefore, the response evoked by the test stimulus
revealed the properties of the cell being in a fixed state of adaptation. As the
steady-state response, we measured the mean firing frequency within the last
100 ms of the test stimulus. The onset firing frequency was determined as the
largest deviation from the response preceding the test stimulus within the
first 30 ms of the response smoothed with a running average of 3 ms width.
To parameterize f–I curves, we fitted the Boltzmann function f(I) � fmax/(1
� exp(�k(I � I1/2))) to the data. The slope of the linear part of the f–I curve
is then given by s � fmaxk/4.

Adaptation model. Benda and Herz (2003) derived a general model for
the dynamics of spike-frequency adaptation (Eq. 1) from the known
kinetics of various adaptation mechanisms acting on the spike generator
(“encoder adaptation”) [e.g., M-type currents, afterhyperpolarization
(AHP)-type currents, and even slow recovery from inactivation of the
fast sodium current]. If the dynamics of adaptation are slow compared
with an ISI, then the much faster dynamics of the spike generator can be
treated independently of the slower dynamics of the adaptation process.
In the simplest case in which the stimulus is changing slowly within an
ISI, the generation of spikes can be described by a simple mapping of the
stimulus through the f–I curve f0( I) of the neuron that returns the output
firing frequency f(t) as a function of the input stimulus I(t) that varies
with time t. Most mechanisms of encoder adaptation result in a change in
an ionic current through the membrane of the neuron that is flowing in
parallel with the ionic current I constituting the input. Therefore, adap-
tation is acting subtractively on the input. In contrast, a divisive effect on
the stimulus would be expected if adaptation is attributable to depressing
synapses (Abbott et al., 1997; Tsodyks et al., 1998).

The adaptation current can be approximated by its temporal average
A, because we assumed it to be slow compared with the spike generation.
Averaging the dominant slow process of the adaptation mechanism (gat-
ing of the M-type current, removal of intracellular calcium for AHP-type
currents) yields the following dynamics of the firing frequency f(t):

f � f0	I � A
, (1a)

�
dA

dt
� f �

�1	 f 
 � f 0
�1	 f 
 � A. (1b)

The onset f–I curve f0( I) is the f–I curve of the unadapted neuron that one
gets by measuring the onset response to step-like stimuli of various in-
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tensities, I. The averaged adaptation current is
subtracted from the input in Equation 1a and
therefore shifts f0( I) to higher input intensities.
Because adaptation currents are activated by
the generated spikes, the dynamics of adapta-
tion is driven by the output firing frequency.
For an expression of the steady-state value of A,
we used the steady-state f–I curve [see Fig. 6 for
an example of f0( I) and f�( I)]. In particular, the
state of adaptation A(t) in Equation 1b is driven
by the horizontal distance f �

�1( f ) � f 0
�1( f ) be-

tween the onset and steady-state f–I curve at the
firing frequency f.

Other plausible adaptation mechanisms, act-
ing, for example, on the transduction of a phys-
ical stimulus in a receptor neuron (Gollisch and
Herz, 2004), could be driven by the input stim-
ulus I directly. In this case, the dynamics for A is
governed by the following:

�
dA

dt
� I � f 0

�1	 f�	I

 � A, (2)

where I � f 0
�1( f�( I)) is the distance of the two

f–I curves at the steady-state firing frequency
f�( I). In contrast to the corresponding term for
output-driven adaptation in Equation 1b that
depends on the actual firing frequency, this
term is constant for a constant stimulus I.

In the special case of linear f–I curves, the
model for output-driven adaptation Equation 1
is linear and constitutes a high-pass filter with
gain as follows:

g	 fc
 � f ���1 � 	2�fc�efff �0/f ��
2

1 � 	2�fc�eff

2 ,

(3)

where f 0
� and f �

� are the slopes of the f–I curves,
and fc is the frequency component of the stim-
ulus I(t). The effective time constant of adaptation �eff � �f �

� /f 0
� can be

observed as the exponential decay of the firing frequency evoked by a step-
like stimulus. It is smaller than the adaptation time constant � describing the
dynamics of the adaptation mechanism. Note that for input-driven adapta-
tion, �eff equals the adaptation time constant � in Equation 2.

Equations 1–3 describe the effect of adaptation only. However, if stim-
ulus fluctuations are fast compared with an ISI (
1/f ), the low-pass filter
effect of spikes has to be taken into account by specifying a model for
spike generation (Benda and Herz, 2003). The perfect integrate-and-fire
neuron,

d�

dt
� f	t
, (4)

requires no additional parameter and is the canonical model for the
dynamics on a limit cycle, as emerging by suprathreshold stimulation.
Whenever the phase � reaches the value 1, � is reset to zero, and a spike
is elicited. From these spikes, a firing frequency can be calculated as 1/ISI
and compared with the experimentally measured one.

The two models Equations 1 and 2 in combination with Equation 4 are
fully described by the onset and steady-state f–I curves of the neuron,
f0( I) and f�( I), and by the adaptation time constant �. Therefore, the
firing-frequency responses of an adapting neuron to time-varying stim-
uli can be predicted after determining the f–I curves of the neuron and
adaptation time constant with step stimuli.

Results
Chirps: signal characteristics
Small chirps (also known as type II chirps) are brief events in
which a fish raises the frequency of its EOD by 30 –150 Hz (the

size of the chirp) for 10 –20 ms (Hagedorn and Heiligenberg,
1985; Zupanc and Maler, 1993; Engler et al., 2000; Bastian et al.,
2001); an example is shown in Figure 1, A and B. This frequency
modulation advances the phase of the EOD by approximately one
(0.25–1.5) EOD cycle (��C) (Fig. 1B, gray area). In the presence
of an EOD of a second fish, this phase advance generated by the
chirp is added to the phase �� of the resulting beat (Fig. 1C,D).
This advance of the beat phase produces a fast change in EOD
amplitude (Fig. 1C), as illustrated in Figure 2. Thus, the superpo-
sition of a second EOD transforms the frequency modulation of
the EOD generated by a chirp into a rapid EOD AM that inter-
rupts the beat. Note that the EOD amplitude during a chirp never
exceeds the amplitudes during the beat, because the chirp just
accelerates the beat waveform without changing it.

There are two time scales in the EOD AMs. The rapid ampli-
tude changes induced by chirps introduce a fast time scale, which
is set by the chirp size and duration and, given the stereotyped
nature of these signals, is approximately fixed. A variable time
scale is set by the beat frequency that is given by the difference �f
of the EOD baseline frequencies of each fish. A fish could use
differences in those two time scales to detect chirps within a beat.

For a quantitative estimation of the spectral characteristics of
the EOD AM during a chirp, we assume that the phase of the beat
�� is increased linearly by the chirp (Fig. 1D, compare inset).
Therefore, the AM induced by a chirp can be characterized by a
single frequency fchirp that is determined by the slope of the beat
phase at the chirp. The total change in beat phase during the chirp

Figure 1. Chirps. A, Looking at the EOD waveform (solid line), a small chirp (within the tic marks) is only visible as a small
decrease in EOD amplitude (dashed line). This trace was recorded from the head–tail electrodes that do not pick up an additional
stimulus field. B, Plotting the frequency of the EOD reveals the chirp, a transient (�t � 11 ms) increase in EOD frequency (76 Hz)
followed sometimes by a much smaller decrease in EOD frequency. This frequency excursion results in a phase shift ��C relative
to an EOD without a chirp, which is given by the integral over the EOD frequency minus its baseline frequency (gray area). ��C is
always positive, because a chirp always increases the EOD frequency. C, The presence of an EOD of a second fish creates a beat; here,
with frequency�f �5 Hz. The chirp (within the vertical dashed lines) has a huge impact on the beat pattern (envelope of the EOD,
solid line). One-half of a cycle of the beat (dashed line) is compressed (horizontal arrow) within the chirp, thus resulting in a phase
shift of the beat. The same chirp as in A is shown but recorded from the transdermal electrodes while applying an artificial EOD on
the stimulus electrodes mimicking a second fish. D, The phase �� of the beat determines the position of peaks (upward arrow)
and troughs (downward arrows) of the beat. �� is the difference between the phases of the two EODs. In the absence of chirps,
the phases of the EODs �1 � f1t and �2 � f2t are determined by their respective frequencies, f1 and f2, and thus the phase of the
beat is linearly increasing in time (dashed line; �� � �2 � �1 � �ft), as determined by the beat frequency �f � f2 � f1. A
chirp leads to a sudden increase in the phase of the beat (solid line), because the phase shift ��C of the chirp is added to the phase
shift of the beat �f�t and thus accelerates the beat pattern for the duration �t of the chirp. This is demonstrated by the inset that
shows enlarged the time course of the beat phase during the chirp. Note also that the phase increase during the chirp is in good
approximation linear.
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of width �t is the phase shift �f�t, attributable to the beat alone
plus the phase shift ��C of the chirp. Dividing by �t yields the
slope of �� and thus the characteristic frequency fchirp of the AM
during the chirp:

fchirp � �f � ��C/�t. (5)

The second term is in the order of �70 Hz (��C 
 1, �t 
 14 ms);
it ranges from 18 Hz (��C 
 0.25) to 110 Hz (��C 
 1.5). There-
fore, as shown in Figure 2, chirp-induced AMs are faster than the
beat AMs that typically elicit them (��f � � 50 Hz) (Bastian et al.,
2001), but the relative difference in time scales is reduced for higher
beat frequencies proportional to 1/��f � (Fig. 2C).

P-unit response
The response of a single P-unit stimulated with the superposition
of the fish’s own EOD and an artificial stimulus mimicking a
second fish’s EOD with chirps is shown in Figure 3A. As is known,
the firing-frequency response (Fig. 3B) closely follows the slow
beat (Bastian, 1981; Nelson et al., 1997). In the example shown,
the response ranges from 50 Hz in the troughs to 250 Hz on the
peaks, a 200 Hz firing frequency modulation. The chirp in this
example produces one-half of an EOD cycle of phase advance in
the trough of the beat, resulting in a fast upstroke in EOD ampli-
tude (Fig. 3C). This signal evokes a clearly enhanced response of
up to 420 Hz, overshooting the response to the beat peaks almost
by a factor of 2.

Chirps are frequency modulations produced by one fish that
are converted into AMs by the superposition of the EOD of an-
other fish. To confirm whether the enhanced response of the
P-units to chirps is solely caused by the resulting AM, we addi-

tionally stimulated the fish with an AM
similar to that generated by the chirp, but
without the frequency modulation of a
real chirp (see Materials and Methods)
(Fig. 3D–F). The averaged mean difference
between the firing-frequency response to
the real chirp and the pure AM was 59 �
50 Hz (n � 257 chirps), within �50 ms
around the chirp. This makes the two fir-
ing frequencies indistinguishable (� 2 test;
p � 0.66 � 0.47).

Additional examples of P-unit re-
sponses to chirps of different sizes at vari-
ous beat positions and beat frequencies are
shown in Figure 4. Chirp-induced down-
strokes in EOD amplitude evoke a strongly
reduced firing frequency or even a period
of silence after the chirp (Fig. 4A,C). Up-
strokes evoke strongly enhanced firing fre-
quencies (Fig. 4B,C). Especially large
chirps with phase shifts �0.5 produce
both upstrokes and downstrokes (Fig.
2E,F), often resulting in a very low re-
sponse followed by a very high response, as
in Figure 4C, and vice versa. However, at
higher beat frequencies, the response to
chirps is just as large as the response to the
beat (Fig. 4D).

We analyzed the responses of 36
P-units to 1208 chirps altogether. Each of
these chirps had one of five different sizes
(30, 60, 100, 122, and 153 Hz peak fre-
quency increase corresponding to phase

shifts of 0.25, 0.5, 0.8, 1.0, and 1.25) on five different beat fre-
quencies (5, 10, 20, 30, and 60 Hz) and occurred on 10 different
beat positions. Thus, only a small subset of all possible combina-
tions of chirp sizes and beat frequencies was measured in each
unit. On average, 13.5 trials were measured for each chirp. We
assumed that the chirps are mainly coded by firing frequency and
that the detectability of a chirp within a beat can be estimated by
the response gain, which basically is the maximum modulation
depth of the firing-frequency response during the chirp divided
by its modulation depth during the beat (see Materials and Meth-
ods). The response gain did not show a significant dependence on
chirp size (r � 0.03; p � 0.3; n � 1177) or beat position (r � 0.02;
p � 0.5; n � 1208).

However, as suggested in Figure 4, beat frequency had a large
effect on response gain (Fig. 5). For the 5 Hz beat, the response
gain was, on average, 2.0 � 0.7, thus enhancing the firing fre-
quency twofold compared with the beat response. The response
gain monotonically decreases as beat frequency increases. At 30
Hz, it is already down at 1.08 � 0.20, meaning that the response
to the beat is now as strong as the response to the chirp. These
data suggest that there is a cutoff frequency in the system between
20 and 30 Hz that separates slow beats from chirps and fast beats,
thus defining two ranges of signal time scales: slow beats on which
chirps are detectable as an enhanced firing-frequency response
and fast beats on which the P-unit firing-frequency response to
chirps becomes invisible.

Spike-frequency adaptation and high-pass filtering
The data could be explained with a high-pass filter that transmits
high-frequency stimuli such as chirps with a much larger gain

Figure 2. Stimuli generated by chirps. EOD AMs resulting from �t � 14-ms-wide chirps of different peak frequency increases
(size s of the chirp) centered around time 0 on various positions ��B within the beat of frequency �f, as indicated, are shown. The
traces were generated assuming a Gaussian frequency increase in the EOD during the chirp according to A( t) � cos(2���( t)),
where ��( t) ���B ��ft � s�� ��

t/� exp(�z 2)dz is the phase of the beat as the time integral of the frequency difference of
the two EODs and � � �t/(2�ln10). These artificial EOD AMs are very similar to AMs resulting from real chirps [compare with
Zupanc and Maler (1993) and Fig. 1C ]. fchirp is an estimate of the stimulus frequency during the chirp as given in Equation 5. A–C,
A 60 Hz chirp advancing the beat by one-half of a cycle (��C � 0.5) on different beat frequencies, �f � 5, 10, and 30 Hz. The
chirp is located at the peak of the beat and thus produces a sudden downstroke in EOD amplitude, which, however, is less salient
at high beat frequencies (C). D, Same chirp as in A but one-half of a cycle later in the beat, therefore starting in the trough of the
beat and producing an upstroke. E, A 100 Hz chirp advancing the beat by ��C � 0.8 cycles at the zero-crossing of the beat–sine
wave. F, After a 122 Hz chirp (��C � 1), the beat continues without a phase shift. The fish emit chirps on every position within
the beat (data not shown).
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than low-frequency stimuli such as beats.
This may be accounted for by the known
spike-frequency adaptation observed in
P-units (Hagiwara and Morita, 1963; Bas-
tian, 1981; Xu et al., 1996; Nelson et al.,
1997). To test this hypothesis, we used a
general model for the firing-frequency dy-
namics of an adapting neuron that was re-
cently derived by Benda and Herz (2003)
(see Materials and Methods). The model is
completely characterized by the onset and
steady-state f–I curves as well as the effec-
tive time constant of adaptation, all of
which can be easily determined from the
response of the neuron to step-like stimuli.
Therefore, the model does not require any
biophysical specification of the adaptation
process. Adaptation of P-units, which are
afferent fibers that innervate numerous tu-
berous electroreceptors (Bennett et al.,
1989), might be attributable to adaptation
of the transduction mechanism within the
electroreceptors, depression of their syn-
apses onto the afferents, or adaptation of
the spike generator in the afferent. Within
the model framework, these three funda-
mentally different adaptation mechanisms
can be distinguished based on the step–
response data.

We measured responses to step-like in-
creases and decreases in the fish’s EOD
amplitude in 18 cells, using the AM-type
stimulation as described in Materials and
Methods. Figure 6A–C shows three examples of firing-frequency
( f) responses to various intensities, I, of a constant stimulus
switched on at t � 0. The initial onset–response f0 of the firing
frequency to the step stimulus reflects properties of the neuron in
a fixed state of adaptation A. The steady-state response f� reveals
information about the maximum adaptation strength at a given
stimulus intensity I. Measuring both quantities for different stim-
ulus intensities results in the onset f–I curve f0( I) and the steady-
state f–I curve f�( I), as shown in Figure 6D. Both types of f–I
curves are linear over a wide range of firing frequencies. Whereas
the steady-state f–I curve spans the entire range of tested EOD
amplitudes (more than �20% of the EOD baseline amplitude),
the onset f–I curve is much steeper and saturates at the EOD
frequency at which the neuron fires a spike at each EOD cycle and
goes to zero for lower amplitudes. This and saturating responses
such as the one shown in Figure 6B is consistent with an adapta-
tion process that must act at or before the generation of spikes in
which the saturation is introduced.

Adaptation could have a subtractive or divisive effect on the
onset f–I curve. To distinguish between these two possibilities, we
measured the onset f–I curve for different levels of adaptation by
increasing or decreasing the EOD amplitude to some value Ipre

before measuring the response for different intensities, I. In all
cells, the onset f–I curves for the different adaptation levels are
only shifted along the intensity axis (Fig. 6F). Dividing the slopes
of each pair of f–I curves of a cell, such that the slope of the f–I
curve measured at the smaller preadaptation intensity Ipre is di-
vided by the one at a larger preadaptation intensity, and averaging
over all pairs results in 1.02 � 0.21, which is indistinguishable
from 1 (n � 22; p � 0.66; t test), showing that the adaptation

process under investigation acts purely subtractively on the in-
put. This suggests a weak influence of depressing synapses, be-
cause these would have a divisive effect on the input (Abbott et al.,
1997; Tsodyks et al., 1998). Although, ultimately, only appropri-
ate experiments can rule out the synapses as the locus of adapta-
tion, the important finding is that adaptation in the electrorecep-
tors is subtractive and not divisive.

The dynamics of adaptation can be driven either by the output
spikes per firing frequency or the input stimulus directly (Eqs. 1,
2). The distinction between these different dynamics is more sub-
tle, because for linear parts of the f–I curves, they result in exactly
the same equations for the firing frequency. Knowing the onset
and steady-state f–I curves (parameterized with a Boltzmann
function), the only free parameter for both types of adaptation
dynamics is the adaptation time constant �. Fitting the models to
the step–response data, we find for the output-driven model (Eq.
1) (Fig. 6A–C, gray lines) a slightly, although not significantly,
better performance than for the input-driven model Equation 2.
The root mean squared difference between the firing frequency of
the models and the measured firing frequency is �diff � 31 � 25
Hz for output-driven adaptation and �diff � 32 � 36 Hz for
input-driven adaptation (n � 639).

The negative correlation of ISIs that is observed in P-unit
baseline activity (Hagiwara and Morita, 1963; Chacron et al.,
2000; Ratnam and Nelson, 2000) can only be explained by spike-
driven adaptation processes, because we already ruled out de-
pressing synapses that also can induce negative ISI correlations
(Goldman et al., 2002). The negative ISI correlations of the P-unit
response can be easily reproduced by adding a simplified spike-

Figure 3. P-unit response to a chirp. The example shows a 60 Hz chirp at the trough of a �f � 10 Hz beat. A, The spike trains
evoked by the presentation of nine chirps at approximately the same beat position of a cell with p � 0.16 (141 Hz baseline firing
rate divided by 881 Hz EOD frequency). B, The firing frequency computed as the averaged inverse ISI from the spikes in A (solid
line). The gray line is the prediction of the spike-frequency adaptation model Equations 1 and 4. C, The relevant stimulus for the
P-unit is the AM of the transdermal EOD. The gray lines are the individual realizations for each of the spike trains in A. The black line
is the average stimulus. D–F, Each EOD AM in C was recorded and subsequently presented as a pure AM to confirm that the AM
generated by the chirp is the only feature that is encoded by the P-units. D, The spike trains evoked by the AM stimuli. E, The
corresponding firing frequency (gray line) is almost identical to the firing-frequency response to the real chirps (black line; same
as in B). F, The averaged stimulus for the AMs (gray line) and the real chirps (black line; same as in B) differ in modulation depth
because of the asymmetric EOD waveform (see Materials and Methods).
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driven adaptation current with a time con-
stant of 42 ms (see below) to a perfect
integrate-and-fire neuron [as proposed by
Benda and Herz (2003), their Eq. 6.5] that
is directly driven by the EOD with additive
noise (data not shown). This additionally
favors the hypothesis that the observed
spike-frequency adaptation is caused by
ionic currents acting on the spike genera-
tion, possibly mediated by Kv3.1 channels
(Chacron et al., 2001). Thus, all of the
characteristics of the adaptation model
Equation 1 are met. Note that the model
was originally derived for current stimuli
that are directly applied to the spike gener-
ator, whereas here we only take the AM
separated from the EOD as the stimuli. We
show how to resolve this issue in the
Appendix.

The adaptation time constants � ob-
tained by fitting the output-driven model
Equation 1 to the step–response data are
independent of stimulus intensity (r �
�0.05 � 0.54; p � 0.24 � 0.31; mean �
SD from 38 cells with each 10 –29 mea-
sured � � I pairs) (Fig. 6E), thus confirm-
ing the assumption of the model of � being
constant. The time constants are also inde-
pendent of the baseline firing rate of the
P-units (r � �0.23; p � 0.17) or p value
(baseline firing rate divided by EOD fre-
quency; r � �0.14; p � 0.4) and averaged
to 42 � 17 ms (n � 38 cells).

The adaptation time constant describes
the dynamics of the adaptation mecha-
nism. It is usually larger than the effective
time constant of adaptation that is ob-
tained by fitting a single-exponential func-
tion [f(t) � ( f0 � f�) exp(�t/�eff) � f�] to
the time course of the firing frequency
evoked by step-like stimuli (Fig. 6A–C,
dotted line), the reason being that in
output-driven adaptation, the state of ad-
aptation relaxes toward a value that is not
constant and set by the stimulus but rather

depends on the current firing frequency. The effective time con-
stant of adaptation is independent of stimulus intensity (r �
0.01 � 0.38; p � 0.38 � 0.29; mean � SD from 38 cells with each
5–28 successfully measured �eff � I pairs) (Fig. 6E) independent
of the baseline firing frequency of the cells (r � �0.27; p � 0.09)
or p value (r � �0.26; p � 0.12) and averages to 6.9 � 2.0 ms (n �
38 cells), which is one-sixth of the value of �. The two time con-
stants � and �eff are related by the relative slopes f 0

� and f �
� of the

onset and steady-state f–I curves via �eff � �f �
� /f 0

� , if the f–I curves
are approximately linear (Benda and Herz, 2003). Indeed, we find
for the relative slopes f 0

� /f �
� a value of 6.0 � 1.6.

The high-pass filter Equation 3 induced by spike-frequency
adaptation can be characterized by a cutoff frequency that sepa-
rates slow stimuli that are transmitted with low gain from fast
stimuli that are transmitted with a larger gain (Fig. 7A). The
cutoff frequency fcutoff � (2��eff)

�1 is determined by the effective
time constant of adaptation (Benda and Herz, 2003). From our
data, we obtain fcutoff � 23 � 7 Hz. However, because the high-

Figure 4. Firing-frequency responses (top panels; black line) to various-sized chirps generating a phase shift, ��C , on a beat
with frequency�f at beat position��B as indicated. A–C, Recordings from a single P-unit with p�0.42 (baseline firing rate, 346
Hz; EOD frequency, 826 Hz) are shown. The corresponding AMs of the transdermal EOD are shown in the bottom panels (individual
stimuli, gray; averaged stimulus, black). The model prediction (top panels; gray solid line) closely follows the measured firing
frequency (black line), whereas the prediction with the onset f–I curve alone does not describe the data (dashed gray line). A, A 60
Hz chirp occurring around the top of a 5 Hz beat generates a fast downstroke in EOD amplitude. This causes the neuron to entirely
stop spiking. In contrast, the neuron still fires at the troughs of the beat. Note that the firing frequency cannot equal zero, because
it is measured as the inverse ISI. Periods of silence appear as straight horizontal lines. B, Chirps at around the trough of the beat
generate fast upstrokes, causing a much stronger response than the one during beat peaks. C, A larger 100 Hz chirp produces a
downstroke immediately followed by an upstroke. This results in a short pause followed by a strong peak in the firing-frequency
response. Note the enlarged time axis. D, A 100 Hz chirp on a faster 30 Hz beat recorded from a different unit (same unit as in Fig.
3). The response to the beat is almost as large as the response to the chirp.

Figure 5. Response gain as a function of beat frequency �f for all 1208 chirp responses
measured. The horizontal line within the boxes represents the median, the box includes the 2nd
and 3rd quartiles, and the ends of the vertical lines mark the 1st and 9th deciles. Chirps evoke a
response that is larger than the response to the beat (response gain �1) if the beat frequency
is smaller than �30 Hz.
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pass filter Equation 3 is just a single-pole
filter, it has no sharp cutoff. The gain raises
rather gradually from low to high values
over the range of stimulus frequencies
considered in this study.

Model prediction for beats and chirps
Having measured the onset f–I curve, the
steady-state f–I curve, and the adaptation
time constant for a given cell, the adapta-
tion model Equation 1 is defined com-
pletely. In combination with the perfect
integrator Equation 4 for simulating a
spike generator (see below and Materials
and Methods), we can now predict the
firing-frequency response of the same cell
to an entirely different set of stimuli,
namely beats and chirps, without any ad-
ditional parameter fitting. For this pur-
pose, we feed the measured AM of the
EOD evoked by the chirp as the stimulus
I(t) into the model Equations 1 and 4. As
Figures 3 and 4 show, the prediction of the
model closely follows the firing-frequency
response to the beats as well as the chirps
(� 2 test; p � 0.51 � 0.49; n � 635). The
root mean squared difference �diff be-
tween the predicted and the measured fir-
ing frequency within �50 ms around each
chirp is 56 � 36 Hz, on average. Compar-
ing this error to the modulation depth of
the response during the beat results in a
prediction error of 24 � 8%. On the con-
trary, neglecting adaptation and just using
the onset f–I curve [f � f0( I)] obviously
fails to predict the firing frequency (Fig. 4,
dashed gray lines). The good performance
of the adaptation model shows that spike-
frequency adaptation is sufficient for ex-
plaining the firing-frequency response of
the electroreceptors to chirps.

What happens is that the adaptation
strength follows low-frequency beats (i.e.,
in terms of the model, the onset f–I curve is
shifted according to the stimulus to lower
and higher intensities, which results in fir-
ing frequencies that are close to the ones
given by the steady-state f–I curve). An
AM generated by a chirp, however, is too fast for the adaptation
dynamics to follow; the onset f–I curve will practically stay where
it was right before the chirp. If the chirp occurs at the peak of the
beat, then the neuron is strongly adapted (i.e., the onset f–I curve
is shifted to high stimulus intensities), and if the sudden down-
stroke of the produced AM easily gets below the threshold of the
f–I curve, the neuron stops firing. If the chirp occurs during the
trough of the beat, then the neuron is very sensitive, because its
onset f–I curve is shifted to low stimulus intensities. The sudden
upstroke caused by the chirp thus evokes very high firing fre-
quencies that then rapidly adapt back to values given by the
steady-state f–I curve.

Using the gain g( fc) Equation 3 of the high-pass filter of the
linearized adaptation model with the mean values �eff � 7 ms and

f 0
� /f �

�1 � 6, we can predict the response gain as the gain of the
chirp divided by the gain of the beat, as follows:

response gain � g	��f � ��C/�t�
/g	��f �
, (6)

where we used Equation 5 for an estimate of the AM frequency
during a chirp. Chirps are high-frequency events with respect to
the cutoff frequency of the high-pass filter. Therefore, their gain is
maximal and approximately independent of the beat frequency
�f for positive �f. Dividing by the gain of the beat results in a
function that gradually decreases with increasing ��f � (Fig. 7B). It
reproduces the decay of the response gain data with increasing �f
qualitatively but drastically overestimates the observed gain (Fig.
7C, circles), especially at low beat frequencies.

In addition to the response gain estimate Equation 6, which
assumes linear f–I curves, the model Equation 1 takes the satura-

Figure 6. Firing frequency–intensity curves ( f–I curves) measured in the same cell as in Figure 4A–C. First, the cell was
adapted to some EOD amplitude Ipre higher, lower, or equal to the EOD baseline amplitude (2.43 mV/cm) to prepare the cell in
different states of adaptation. Then the stimulus was stepped to various amplitudes I at time t � 0. Three examples of the
firing-frequency response to the second part of the stimulus are shown in A–C (black solid lines). An exponential fit (dotted line;
clipped at the maximum response) measured the effective time constant of adaptation �eff , and a fit of the computed response of
the adaptation model Equations 1 and 4 (gray line) yields the adaptation time constant �. Note that fitting an exponential to the
step responses describes the data sufficiently well but, in contrast to the adaptation model Equation 1, does not define a dynamics
for arbitrary stimuli. A, Stimulus amplitudes I larger than Ipre evoke a strong onset response f0, which rapidly adapts down to a
steady-state value f� slightly above baseline activity (357 Hz). B, For very large intensities, the response saturates at the EOD
frequency. C, Decreasing the EOD amplitude may even cause cessation of firing. After a while, the cell recovers from adaptation and
starts firing again, leveling out below the baseline activity. D, Onset f–I curve f0( I) (triangles) and steady-state f–I curve f�( I)
(circles) constructed from onset and steady-state responses for a particular preadaptation stimulus Ipre (here the EOD baseline
amplitude; vertical dotted line). Fitting Boltzmann functions to both f–I curves describes the data reasonably well (solid and
dashed lines; see Materials and Methods). The baseline firing frequency (triangles) as the response to the fish’s own EOD was
measured during 100 ms before applying the preadapting stimulus. E, The effective time constant �eff (�) and the adaptation
time constant � (*) obtained from the measurement shown in D are independent of stimulus intensity I. The averaged time
constants from all 18 cells are �eff �7 ms (dashed dotted line) and ��42 ms (dashed line). F, Comparison of f–I curves measured
for three values of Ipre (vertical dotted lines) of the preadaptation stimulus and thus three different states of adaptation. By
definition, the steady-state f–I curves (solid lines) and the baseline firing frequencies (dashed dotted line) are independent of Ipre.
In contrast, the onset f–I curves (triangles, data; dashed lines, fit) are shifted by adaptation along the intensity axis while keeping
their shape.
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tion of the f–I curves into account. The response gain computed
from the prediction of the model (Fig. 7C, squares) is, however,
still very similar to the linear estimate.

The adaptation model Equation 1a maps the fast transients of
the chirp stimulus directly into a firing frequency via the onset f–I
curve. However, as pointed out by Benda and Herz (2003) (their
Eq. 6.3), during each ISI, a suprathreshold-driven spike generator
integrates over the stimulus along its limit cycle. This temporal
averaging results in low-pass filtering that can have a substantial
effect on the response to stimulus transients that are short com-
pared with an ISI (especially at periods of silence as in Fig. 4A).
For predicting the firing-frequency response, we already used the
perfect integrate-and-fire neuron Equation 4 to generate spikes
and thus to account in the simplest possible way for the low-pass
filter effect. The response gain calculated from the predictions
(Fig. 7C, triangles) indeed matches the observed values well (Fig.
7C, circles).

Discussion
The example we have presented here emphasizes the general
functional role of high-pass filter properties that result from any
kind of spike-driven adaptation. We have demonstrated how ad-
aptation in electroreceptor afferents of the weakly electric fish A.
leptorhynchus enhances the response to small but fast communi-

cation signals (i.e., the chirps) by tempo-
rally separating them from slower back-
ground signals (i.e., the beats). The stimuli
generated by small chirps boil down to a sud-
den and short increase in AM frequency of
the EOD by �18–110 Hz on top of a beat
pattern of arbitrary frequency. From the ef-
fective time constant �eff � 7 ms, measured
from the exponential decay of the firing-
frequency response of the electroreceptor af-
ferents to constant stimuli, we conclude that
the cutoff frequency of the generated high-
pass filter is at fcutoff � 23 Hz. This cutoff
frequency defines a time scale that separates
slow from fast stimuli. Chirps on beat fre-
quencies below that frequency give rise to an
enhanced response, whereas on higher beat
frequencies, the response to the beat is about
as strong as the one to the chirp. Note that
this result is independent of the phase shift
(Fig. 1C, arrow) of the beat induced by the
chirp.

In a behavioral study, Bastian et al.
(2001) measured the probability of a fish
emitting a small chirp (Fig. 7D). They ob-
served a decrease in chirp probability with
increasing beat frequency in a manner sur-
prisingly similar to that reported here for
the response gain of the electroreceptor af-
ferents. Assuming that the fish emit chirps
mainly at beat frequencies at which a con-
specific fish would be able to detect the
chirps, this match is consistent with our
hypothesis that an enhanced firing-
frequency response induced by a chirp is
important for the detectability of a chirp.
Although we are not able to make a causal
connection between detectability of chirps
in electroreceptor responses and behavior,
and although it is not known from behav-

ioral studies on which beat frequencies a fish is really able to
detect a chirp, the single adaptation mechanism explaining our
data could, in principle, account for a large part of the behavior.
Moreover, this is consistent with the independence of the adap-
tation time constant from the electroreceptor p value (baseline
activity divided by EOD frequency), because this guarantees a
well defined cutoff frequency to the higher-level neurons.

The important concept of a high-pass filter and its cutoff fre-
quency relies on the linearity of the system under investigation.
Because of their high baseline activity of �140 – 450 Hz (Bastian,
1981), their nicely linear f–I curves around that baseline activity
and the subtractive shift of the onset f–I curve by adaptation
P-units are indeed well described by linear adaptation dynamics.
Depressing synapses, on the other hand, exhibit similar signal
transmission properties, in that they respond to changes in the
input with strong transients (Abbott et al., 1997; Tsodyks and
Markram, 1997; Tsodyks et al., 1998). However, depressing syn-
apses are inherently nonlinear because of the fractional depletion
of resources that differentiates them from the basically linear
dynamics of spike-driven adaptation (Benda and Herz, 2003).
Therefore, they might have more complex signal transmission
properties.

The high-pass filter model introduced by Nelson et al. (1997)

Figure 7. Comparison of the response–gain data with model predictions and behavior. A, The gain Equation 3 of the high-pass
filter generated by adaptation (solid line) as a function of stimulus frequency. The averaged value of the measured effective
adaptation time constants sets the cutoff frequency fcutoff of the gain function to 23 Hz (vertical line in all panels). Chirps are
high-frequency signals (gray area) that are transmitted with a high gain. B, The response gain Equation 6 as a function of positive
beat frequencies �f estimated from the high-pass filter shown in A. The dashed line is the response gain for 14-ms-wide chirps
that generate a phase shift of 1, and the gray area is for phase shifts ranging from 0.25 to 1.5. C, The response gain from B (dashed
line and gray area) explains the decay of the observed response gain only qualitatively (filled circles; median with 2nd and 3rd
quartiles). For the 18 cells in which f–I curves were measured, we computed the response gains as predicted by the models. Using
the adaptation model Equation 1, thus taking the saturating f–I curves into account, does not improve the match (squares).
However, the additional low-pass filter properties introduced by spikes, modeled using the perfect integrator Equation 4, reduce
the predicted response gains significantly (triangles), resulting in a much better match to the actually observed data. The variability of the
response– gain data can be mainly attributed to the different sized chirps (compare error bars to the width of the gray area). D, The
probability of a male fish emitting chirps as a function of beat frequency as reported by Bastian et al. (2001), their Fig. 3A.
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is equivalent to our model Equation 1 for the linear parts of the
f–I curves (�a � �eff, Ga � f 0

� � f �
� , Gb � 0, GC � f �

� ). Longer
adaptation time constants, as reported by Xu et al. (1996) and
Nelson et al. (1997), do not play a role in encoding chirps, be-
cause the stimuli fluctuate symmetrically around the EOD base-
line amplitude and usually contain frequencies �1 Hz. Further-
more, the additional threshold dynamics of an integrate-and-fire
neuron introduced by Chacron et al. (2000) to explain negative
ISI correlations (Hagiwara and Morita, 1963; Ratnam and Nel-
son, 2000) can be replaced by the adaptation dynamics of the
high-pass filter that is added as an spike-activated adaptation
current to a model for the spike generator. Thus, this single ad-
aptation current of the electroreceptor afferents plays a threefold
role in encoding behaviorally relevant stimuli. Because of nega-
tive ISI correlations, the spike-count variability to low-frequency
stimuli is reduced, hence improving object detection (Ratnam
and Nelson, 2000; Chacron et al., 2001). High-frequency stimuli
including the transient induced by small chirps are transmitted
with higher gain than low-frequency signals (Nelson et al., 1997;
present study), and the negative ISI correlations additionally en-
hance the mutual information for high-frequency stimuli (Cha-
cron et al., 2001).

Spike-driven adaptation and depressing synapses can produce
many of the same input transformations. Both can account for
negative ISI correlations in the output spike train (Goldman et
al., 2002), and both respond to changes in the stimulus with
strong transients. However, each depressing synapse filters its
input individually, and the gain to each of the inputs of the neu-
ron is therefore adjusted selectively (Abbott et al., 1997). In con-
trast, spike-driven adaptation acts on the overall input to the
neuron and thus works like a master volume control. Spike-
driven adaptation is observed in a wide range of neurons, and we
propose that it may act to globally optimize detection of higher-
frequency input. The combination of adaptation and synaptic
depression may result in more complex computations. For exam-
ple, avian wide-field tectal neurons (stratum griseum centrale
cells) get input from retinal ganglion cells via depressing syn-
apses. Together with an additional adaptation mechanism in the
dendrites or soma, the cell performs spatiotemporal computa-
tions resulting in motion sensitivity independent of stimulus de-
tails (Luksch et al., 2004).

Appendix
EOD AM as a separately processed stimulus
The adaptation model Equation 1 was derived for currents di-
rectly stimulating the spike generator (Benda and Herz, 2003).
However, in our study, we only used the AM as a stimulus, ignor-
ing the fact that P-unit spikes are phase-locked to the EOD (Hagi-
wara et al., 1965) and that the spike generator therefore must be
driven by the EOD. In other modeling studies of P-units, the
EOD AM is processed independently from the EOD as well (Nel-
son et al., 1997; Chacron et al., 2000). Below, we show how the
treatment of the EOD amplitude independent of the EOD carrier
waveform could be justified.

The EOD waveform s(t) can be approximated by a sine wave
with angular frequency 	, the amplitude of which is modulated
by the stimulus I(t):

s	t
 � I	t
 sin		t
, (7)

[Note that in this notation, I(t), includes the baseline EOD am-
plitude]. The EOD is picked up by 20 – 40 receptor cells that
synapse to a single nerve fiber (Zakon, 1987; Bennett et al., 1989).
The transduction process and the transmission through the syn-

apses might in its simplest case be described by a rectification of
the stimulus, denoted by [�]�, which cuts off the negative parts of
the argument, so that we get for the current J(t) arriving at the
spike generator:

J	t
 � b�s	t
��, (8)

where b � const is a proportionality factor. This current is con-
verted into a series of spikes. Adopting the formalism of Benda
and Herz (2003), the spike generation can be characterized by the
firing frequency f(t) given by the onset f–J curve f̂0( J):

f	t
 � f̂0(J(t)). (9)

Assume that a weight function, w(t), independent of I(t), exists
such that replacing the input current J(t) in Equation 9 by its
average

�J�T,w	t
� �
1

T �
t�T/ 2

t�T/ 2

w	t� � t
J	t�
dt� (10)

over a single ISI T does not change the output firing frequency f
for any I(t). Then we get the following:

�J�T,w	t
 � I	t
b��sin		t
���T,w . (11)

Because T is usually greater than the period of the EOD, the
average on the right can be approximated by a constant c. Ab-
sorbing b and c into the f–I curve, we finally get the following:

f̂0(b[I(t) sin		t
]�) � f̂0(bcI(t))�f0(I(t)), (12)

justifying the separated treatment of the AM I(t) by the adapta-
tion model Equation 1. Because our results obtained for AM
stimuli are consistent with the model Equation 1, w(t) might
likely exists. Thanks to the high baseline firing frequency of
P-units of �140 – 450 Hz, the cutoff frequency of the low-pass
filter (10) is much higher than the one of the high-pass filter
induced by adaptation, so that it does not interfere with our
results. In summary, because of the integration (averaging) of the
stimulus by the spike generator during ISIs that are usually longer
than an EOD period, the treatment of the EOD AM independent
of the EOD is possible.

References
Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and

cortical gain control. Science 275:221–224.
Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal

circuitry. Neuron 36:909 –919.
Bastian J (1981) Electrolocation. I. How electroreceptors of Apteronotus al-

bifrons code for moving objects and other electrical stimuli. J Comp
Physiol [A] 144:465– 479.

Bastian J, Schniederjan S, Nguyenkim J (2001) Arginine vasotocin modu-
lates a sexually dimorphic communication behavior in the weakly electric
fish Apteronotus leptorhynchus. J Exp Biol 204:1909 –1923.

Benda J, Herz AVM (2003) A universal model for spike-frequency adapta-
tion. Neural Comput 15:2523–2564.

Bennett MVL, Sandri C, Akert K (1989) Fine structure of the tuberous elec-
troreceptor of the high-frequency electric fish, Sternarchus albifrons
(gymnotiformes). J Neurocytol 18:265–283.

Castro-Alamancos MA (2004) Absence of rapid sensory adaptation in neo-
cortex during information processing states. Neuron 41:455– 464.

Chacron MJ, Longtin A, St-Hilaire M, Maler L (2000) Suprathreshold sto-
chastic firing dynamics with memory in P-type electroreceptors. Phys Rev
Lett 85:1576 –1579.

Chacron MJ, Longtin A, Maler L (2001) Negative interspike interval corre-
lations increase the neuronal capacity for encoding time-dependent stim-
uli. J Neurosci 21:5328 –5343.

2320 • J. Neurosci., March 2, 2005 • 25(9):2312–2321 Benda et al. • Temporal Signal Separation by Neural Adaptation



Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical
synapses contributes to rapid adaptation of cortical sensory responses in
vivo. Neuron 34:437– 446.

Cook DL, Schwindt PC, Grande LA, Spain WJ (2003) Synaptic depression
in the localization of sound. Nature 421:66 –70.

Crook SM, Ermentrout GB, Bower JM (1998) Spike frequency adaptation
affects the synchronization properties of networks of cortical oscillators.
Neural Comput 10:837– 854.

Engler G, Fogarty CM, Banks JR, Zupanc GKH (2000) Spontaneous modu-
lations of the electric organ discharge in the weakly electric fish, Apterono-
tus leptorhynchus: a biophysical and behavioral analysis. J Comp Physiol
[A] 186:645– 660.

Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike frequency
adaptation and negative feedback on the synchronization of neural oscil-
lators. Neural Comput 13:1285–1310.

Fairhall AL, Lewen GD, Bialek W, de Ruyter van Steveninck RR (2001) Ef-
ficiency and ambiguity in an adaptive neural code. Nature 412:787–792.
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