import matplotlib.pyplot as plt import numpy as np from read_chirp_data import * from utility import * from IPython import embed data_dir = "../data" dataset = "2018-11-09-ad-invivo-1" spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) eod = read_chirp_eod(os.path.join(data_dir, dataset)) chirp_times = read_chirp_times(os.path.join(data_dir, dataset)) df_map = {} for k in spikes.keys(): df = k[1] if df in df_map.keys(): df_map[df].append(k) else: df_map[df] = [k] # make phases together, 12 phases phase_vec = np.arange(0, 1+1/12, 1/12) phase_mat_df = {} for deltaf in df_map.keys(): phase_df = {} for rep in df_map[deltaf]: for phase in spikes[rep]: #print(phase) for idx in range(len(phase_vec)-1): if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]: if phase_vec[idx] in phase_df.keys(): phase_df[phase_vec[idx]].append(phase[1]) else: phase_df[phase_vec[idx]] = [phase[1]] #spikes_one_chirp = spikes[rep][phase] phase_mat_df[deltaf] = phase_df embed() exit() plot_spikes = spikes[(0, '-50Hz', '20%', '100Hz')][(0, 0.789)] fig, ax = plt.subplots() ax.scatter(plot_spikes, np.ones(len(plot_spikes))*10, marker='|', color='k') plt.show() #mu = 1 #sigma = 1 #time_gauss = np.arange(-4, 4, 1) #gauss = gaussian(time_gauss, mu, sigma) # spikes during time vec (00010000001)? #smoothed_spikes = np.convolve(plot_spikes, gauss, 'same') #window = np.mean(np.diff(plot_spikes)) #time_vec = np.arange(plot_spikes[0], plot_spikes[-1]+window, window) #ax.plot(time_vec, smoothed_spikes) #embed() #exit() #hist_data = plt.hist(plot_spikes, bins=np.arange(-200, 400, 20)) #ax.plot(hist_data[1][:-1], hist_data[0])