from read_baseline_data import * from read_chirp_data import * from utility import * #import nix_helpers as nh import matplotlib.pyplot as plt import numpy as np from IPython import embed #Funktionen importieren data_dir = "../data" dataset = "2018-11-09-ad-invivo-1" #data = ("2018-11-09-aa-invivo-1", "2018-11-09-ab-invivo-1", "2018-11-09-ac-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1") spike_times = read_baseline_spikes(os.path.join(data_dir, dataset)) #inst_frequency = 1. / np.diff(spike_times) spike_rate = np.diff(spike_times) x = np.arange(0.001, 0.01, 0.0001) plt.hist(spike_rate,x) mu = np.mean(spike_rate) sigma = np.std(spike_rate) cv = sigma/mu plt.title('A.lepto ISI Histogramm', fontsize = 14) plt.xlabel('duration ISI[ms]', fontsize = 12) plt.ylabel('number of ISI', fontsize = 12) plt.xticks(fontsize = 12) plt.yticks(fontsize = 12) plt.show() #Nyquist-Theorem Plot: chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(chirp_spikes) for i in df_map.keys(): freq = list(df_map[i]) for k in freq: spikes = chirp_spikes[k] phase_map = map_keys(spikes) for p in phase_map: spike_rate = 1./ np.diff(p) print(spike_rate) # # plt.plot(spikes, rate) # plt.show()