import matplotlib.pyplot as plt import numpy as np import scipy.stats as ss from read_chirp_data import * from utility import * from IPython import embed # define sampling rate and data path sampling_rate = 40 #kHz data_dir = "../data" dataset = "2018-11-14-al-invivo-1" inch_factor = 2.54 # parameters for binning, smoothing and plotting cut_window = 60 chirp_size = 14 #ms neuronal_delay = 5 #ms chirp_start = int((-chirp_size/2+neuronal_delay+cut_window)*sampling_rate) chirp_end = int((chirp_size/2+neuronal_delay+cut_window+1)*sampling_rate) num_bin = 12 window = 1 #ms time_axis = np.arange(-cut_window, cut_window, 1/sampling_rate) #steps spike_bins = np.arange(-cut_window, cut_window+1) #ms # read data from files spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) #eod = read_chirp_eod(os.path.join(data_dir, dataset)) #chirp_times = read_chirp_times(os.path.join(data_dir, dataset)) # make a delta f map for the quite more complicated keys df_map = map_keys(spikes) # differentiate between phases phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin) cut_range = np.arange(-cut_window*sampling_rate, cut_window*sampling_rate, 1) # make dictionaries for spiketimes df_phase_time = {} df_phase_binary = {} # iterate over delta f, repetition, phases and a single chirp for deltaf in df_map.keys(): df_phase_time[deltaf] = {} df_phase_binary[deltaf] = {} for rep in df_map[deltaf]: chirp_size = int(rep[-1].strip('Hz')) # print(chirp_size) if chirp_size == 150: continue for phase in spikes[rep]: for idx in np.arange(num_bin): # check the phase if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]: # get spikes between 60 ms before and after the chirp spikes_to_cut = np.asarray(spikes[rep][phase]) spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < cut_window)] spikes_raster = spikes_to_cut[(spikes_to_cut > -cut_window+5) & (spikes_to_cut < cut_window-5)] spikes_idx = np.round(spikes_cut*sampling_rate) # also save as binary, 0 no spike, 1 spike binary_spikes = np.isin(cut_range, spikes_idx)*1 # add the spikes to the dictionaries with the correct df and phase if idx in df_phase_time[deltaf].keys(): df_phase_time[deltaf][idx].append(spikes_raster) df_phase_binary[deltaf][idx] = np.vstack((df_phase_binary[deltaf][idx], binary_spikes)) else: df_phase_time[deltaf][idx] = [spikes_raster] df_phase_binary[deltaf][idx] = binary_spikes # for plotting and calculating iterate over delta f and phases for df in df_phase_time.keys(): for index_phase, phase in enumerate(df_phase_time[df].keys()): # plot plot_trials = df_phase_time[df][phase] plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0) # calculation #overall_spikerate = (np.sum(plot_trials_binary)/len(plot_trials_binary))*sampling_rate*1000 smoothed_spikes = smooth(plot_trials_binary, window, 1./sampling_rate) fig, ax = plt.subplots(2, 1, sharex=True, figsize=(18/inch_factor, 13/inch_factor)) for i, trial in enumerate(plot_trials): ax[0].scatter(trial, np.ones(len(trial))+i, marker='|', color='k') ax[1].plot(time_axis[0+5*sampling_rate:-5*sampling_rate], smoothed_spikes[0+5*sampling_rate:-5*sampling_rate]*1000, color='royalblue', lw = 2) ax[0].set_title('df = %s Hz' %(df), fontsize = 18) ax[0].set_ylabel('repetition', fontsize=22) ax[0].yaxis.set_label_coords(-0.1, 0.5) ax[0].set_yticks(np.arange(1, len(plot_trials)+1,2)) ax[0].set_yticklabels(np.arange(1, len(plot_trials)+1,2), fontsize=18) ax[1].set_xlabel('time [ms]', fontsize=22) ax[1].yaxis.set_label_coords(-0.1, 0.5) ax[1].set_ylabel('firing rate [Hz]', fontsize=22) plt.xticks(fontsize=18) plt.yticks(fontsize=18) fig.tight_layout() #plt.show() #exit() namefigure = '../figures/%s_%i_%i_firingrate.png' %(dataset, df, index_phase) plt.savefig(namefigure)