from read_chirp_data import * #import nix_helpers as nh import matplotlib.pyplot as plt import numpy as np from IPython import embed data_dir = "../data" dataset = "2018-11-09-ad-invivo-1" #data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1") spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) eod = read_chirp_eod(os.path.join(data_dir, dataset)) times = read_chirp_times(os.path.join(data_dir, dataset)) df_map = {} for k in spikes.keys(): df = k[1] if df in df_map.keys(): df_map[df].append(k) else: df_map[df] = [k] print(df_map.keys()) e1 = eod[0, '-50Hz', '20%', '100Hz'] #plt.plot(e1[1]) #plt.show() plt.title('EOD chirps') plt.xlabel('Frequency') plt.ylabel('Amplitude') plt.plot(e1[0],e1[1]) plt.show() ct = times[0, '-50Hz', '20%', '100Hz'] #plt.scatter(ct*1000, np.ones(len(ct))) plt.scatter(np.asarray(ct)*1000, np.ones(len(ct))) plt.show() #plt.scatter(spikes[0, '-50Hz', '20%', '100Hz'][0, 0.614]) #print(len(spikes)) #print(len(eod)) #print(len(times))