import matplotlib.pyplot as plt import numpy as np from read_chirp_data import * from read_baseline_data import * from utility import * from IPython import embed # define data path and important parameters data_dir = "../data" sampling_rate = 40 #kHz cut_window = 40 cut_range = np.arange(-cut_window * sampling_rate, 0, 1) window = 1 # norm: -150, 150, 300 aa, #ac, aj?? data = ["2018-11-13-aa-invivo-1"]#, "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", #"2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1"] ''' # norm: -50 data = ["2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1","2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1"] data = ["2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1"] ''' #data = ["2018-11-09-ad-invivo-1", "2018-11-14-af-invivo-1"] rates = {} for dataset in data: print(dataset) # read baseline spikes base_spikes = read_baseline_spikes(os.path.join(data_dir, dataset)) base_spikes = base_spikes[1000:2000] spikerate = len(base_spikes)/base_spikes[-1] print(spikerate) # read spikes during chirp stimulation spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(spikes) # iterate over df for df in df_map.keys(): ''' if df == 50: pass else: continue ''' #print(df) rep_rates = [] beat_duration = int(abs(1 / df) * 1000) beat_window = 0 while beat_window + beat_duration <= cut_window/2: beat_window = beat_window + beat_duration for rep in df_map[df]: for phase in spikes[rep]: # get spikes 40 ms before the chirp first chirp spikes_to_cut = np.asarray(spikes[rep][phase]) spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < 0)] spikes_idx = np.round(spikes_cut * sampling_rate) # also save as binary, 0 no spike, 1 spike binary_spikes = np.isin(cut_range, spikes_idx) * 1 smoothed_data = smooth(binary_spikes, window, 1 / sampling_rate) train = smoothed_data[window:beat_window+window] norm_train = train*1000/spikerate rep_rates.append(np.std(norm_train))#/spikerate) break df_rate = np.mean(rep_rates) #embed() #exit() if df in rates.keys(): rates[df].append(df_rate) else: rates[df] = [df_rate] fig, ax = plt.subplots() for i, k in enumerate(sorted(rates.keys())): ax.plot(np.ones(len(rates[k]))*k, rates[k], 'o') #ax.legend(sorted(rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1)) fig.tight_layout() plt.show()