import numpy as np import matplotlib.pyplot as plt import thunderfish.peakdetection as pd def create_chirp(eodf): stimulusrate = eodf # the eod frequency of the fake fish currentchirptimes = [0.0] chirpwidth = 0.014 # ms chirpsize = 100. chirpampl = 0.02 chirpkurtosis = 1. p = 0. stepsize = 0.00001 time = np.arange(-0.05, 0.05, stepsize) signal = np.zeros(time.shape) ampl = np.ones(time.shape) freq = np.ones(time.shape) ck = 0 csig = 0.5 * chirpwidth / np.power(2.0*np.log(10.0), 0.5/chirpkurtosis) for k, t in enumerate(time): a = 1. f = stimulusrate if ck < len(currentchirptimes): if np.abs(t - currentchirptimes[ck]) < 2.0 * chirpwidth: x = t - currentchirptimes[ck] g = np.exp(-0.5 * (x/csig)**2) f = chirpsize * g + stimulusrate a *= 1.0 - chirpampl * g elif t > currentchirptimes[ck] + 2.0 * chirpwidth: ck += 1 freq[k] = f ampl[k] = a p += f * stepsize signal[k] = a * np.sin(6.28318530717959 * p) return time, signal def plot_chirp(eodf, eodf1, phase, axis): time, chirp_eod = create_chirp(eodf) eod = np.sin(time * 2 * np.pi * eodf1 + phase) y = chirp_eod * 0.4 + eod p, t = pd.detect_peaks(y, 0.1) axis.plot(time*1000, y) axis.plot(time[p]*1000, (y)[p], lw=2, color='k') axis.plot(time[t]*1000, (y)[t], lw=2, color='k') axis.spines["top"].set_visible(False) axis.spines["right"].set_visible(False) inch_factor = 2.54 fig = plt.figure(figsize=(20 / inch_factor, 10 / inch_factor)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) plot_chirp(600, 650, 0, ax1) plot_chirp(600, 650, np.pi, ax3) plot_chirp(600, 620, 0, ax2) plot_chirp(600, 620, np.pi, ax4) ax1.set_ylabel('EOD [mV]', fontsize=22) ax1.set_title('$\Delta$f = 50 Hz', fontsize = 18) ax1.yaxis.set_tick_params(labelsize=18) ax1.set_xticklabels([]) ax2.set_title('$\Delta$f = 20 Hz', fontsize = 18) ax2.set_xticklabels([]) ax2.set_yticklabels([]) ax3.set_ylabel('EOD [mV]', fontsize=22) ax3.xaxis.set_tick_params(labelsize=18) ax3.yaxis.set_tick_params(labelsize=18) ax3.set_xlabel('time [ms]', fontsize=22) ax4.set_xlabel('time [ms]', fontsize=22) ax4.xaxis.set_tick_params(labelsize=18) ax4.set_yticklabels([]) fig.tight_layout() #plt.show() plt.savefig('chirps_while_beat.png')