import matplotlib.pyplot as plt import numpy as np import scipy.stats as ss from read_chirp_data import * from utility import * from IPython import embed # define sampling rate and data path sampling_rate = 40 #kHz data_dir = "../data" cut_window = 20 data = ["2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1"] for dataset in data: spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(spikes) print(dataset) for df in df_map.keys(): beat_duration = 1/df beat_window = 0 while beat_window + beat_duration <= cut_window: beat_window = beat_window + beat_duration for rep in df_map[df]: for phase in spikes[rep]: response = spikes[rep][phase] break #cut = response[response[]]