from read_baseline_data import * from read_chirp_data import * from utility import * #import nix_helpers as nh import matplotlib.pyplot as plt import numpy as np from IPython import embed #Funktionen imposrtieren data_dir = "../data" dataset = "2018-11-13-ad-invivo-1" #data = ("2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1") Durchgang für alle Datensets - zwischenspeichern von Daten? spike_times = read_baseline_spikes(os.path.join(data_dir, dataset)) spike_iv = np.diff(spike_times) x = np.arange(0.001, 0.01, 0.0001) plt.hist(spike_iv,x) mu = np.mean(iv) sigma = np.std(iv) cv = sigma/mu plt.title('A.lepto ISI Histogramm', fontsize = 14) plt.xlabel('duration ISI[ms]', fontsize = 12) plt.ylabel('number of ISI', fontsize = 12) plt.xticks(fontsize = 12) plt.yticks(fontsize = 12) plt.show() #Nyquist-Theorem Plot: chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(chirp_spikes) sort_df = sorted(df_map.keys()) plt.figure() dct_rate = {} overall_r = {} for i in sort_df: freq = list(df_map[i]) dct_rate[i] = [] overall_r[i] = [] for k in freq: for phase in chirp_spikes[k]: spikes = chirp_spikes[k][phase] rate = len(spikes)/ 1.2 dct_rate[i].append(rate) #overall_r[i].extend(rate) #kann man nicht erweitern! ls_mean = [] for h in sort_df: mean = np.mean(dct_rate[h]) ls_mean.append(mean) plt.plot(np.arange(0,len(dct_rate[h]),1),dct_rate[h], label = h) #plt.vlines(10, ymin = 190, ymax = 310) #Anfang Spur und Endpunkt bestimmen #relativ zur mittleren Feuerrate #wie hoch ist die Adaption von Zellen plt.legend() plt.title('Firing rate of the cell for all trials, sorted by df') plt.xlabel('# of trials') plt.ylabel('Instant firing rate of the cell') plt.show() #mittlere Feuerrate einer Frequenz auf Frequenz: plt.figure() plt.plot(np.arange(0,len(ls_mean),1),ls_mean) #plt.scatter(np.arange(0,len(ls_mean),1), np.mean(int(overall_r))) plt.title('Mean firing rate of a cell for a range of frequency differences') plt. xticks(np.arange(1,len(sort_df),1), (sort_df)) plt.xlabel('Range of frequency differences [Hz]') plt.ylabel('Mean firing rate of the cell') plt.show() #Boxplot #wie viel Prozent macht die Adaption von Zellen aus? #Reihen-Plot #macht die zeitliche Reihenfolge der Präsentation einen Unterschied in der Zellantwort?