from read_chirp_data import * from func_spike import * import matplotlib.pyplot as plt import numpy as np from IPython import embed #Funktionen importieren data_dir = "../data" data_chirps = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1") inch_factor = 2.54 data_rate_dict = {} for dataset in data_chirps: data_rate_dict[dataset] = [] chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) times = read_chirp_times(os.path.join(data_dir, dataset)) eod = read_chirp_eod(os.path.join(data_dir, dataset)) df_map = map_keys(chirp_spikes) for i in df_map.keys(): freq = list(df_map[i]) k = freq[0] phase = list(chirp_spikes[k].keys())[0] spikes = chirp_spikes[k][phase] rate = len(spikes)/ 1.2 data_rate_dict[dataset].append(rate) fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor)) for dataset in data_rate_dict: plt.plot(data_rate_dict[dataset]) plt.title('Test for sequence effects', fontsize = 24) plt.xlabel('Number of stimulus presentations', fontsize = 22) plt.ylabel('Firing rates of cells', fontsize = 22) plt.tick_params(axis='both', which='major', labelsize = 22) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) fig.tight_layout() plt.show()