import matplotlib.pyplot as plt import numpy as np import scipy.stats as ss from read_chirp_data import * from utility import * from IPython import embed # define sampling rate and data path sampling_rate = 40 #kHz data_dir = "../data" dataset = "2018-11-13-al-invivo-1" #dataset = "2018-11-09-ad-invivo-1" ''' data = ["2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1"] data = ["2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1"] ''' # parameters for binning, smoothing and plotting cut_window = 20 #cut_window_csi = 20 #ms #cut_window_plot = 50 #ms chirp_duration = 14 #ms neuronal_delay = 5 #ms chirp_start = int((-chirp_duration / 2 + neuronal_delay + cut_window * 2) * sampling_rate) #index chirp_end = int((chirp_duration / 2 + neuronal_delay + cut_window * 2) * sampling_rate) #index number_bins = 12 window = 1 #ms time_axis = np.arange(-cut_window*2, cut_window*2, 1/sampling_rate) #steps spike_bins = np.arange(-cut_window*2, cut_window*2) #ms # read data from files #spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) #eod = read_chirp_eod(os.path.join(data_dir, dataset)) #chirp_times = read_chirp_times(os.path.join(data_dir, dataset)) # make a delta f map for the quite more complicated keys #df_map = map_keys(spikes) # differentiate between phases phase_vec = np.arange(0, 1 + 1 / number_bins, 1 / number_bins) cut_range = np.arange(-cut_window*2*sampling_rate, cut_window*2*sampling_rate, 1) # make dictionaries for spiketimes df_phase_time = {} df_phase_binary = {} #embed() #exit() #for dataset in data: spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(spikes) print(dataset) # iterate over delta f, repetition, phases and a single chirp for deltaf in df_map.keys(): df_phase_time[deltaf] = {} df_phase_binary[deltaf] = {} for rep in df_map[deltaf]: chirp_size = int(rep[-1].strip('Hz')) #print(chirp_size) if chirp_size == 150: continue for phase in spikes[rep]: for idx in np.arange(number_bins): # check the phase if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]: # get spikes between 40 ms before and after the chirp spikes_to_cut = np.asarray(spikes[rep][phase]) spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window*2) & (spikes_to_cut < cut_window*2)] spikes_idx = np.round(spikes_cut*sampling_rate) # also save as binary, 0 no spike, 1 spike binary_spikes = np.isin(cut_range, spikes_idx)*1 # add the spikes to the dictionaries with the correct df and phase if idx in df_phase_time[deltaf].keys(): df_phase_time[deltaf][idx].append(spikes_cut) df_phase_binary[deltaf][idx] = np.vstack((df_phase_binary[deltaf][idx], binary_spikes)) else: df_phase_time[deltaf][idx] = [spikes_cut] df_phase_binary[deltaf][idx] = binary_spikes # make dictionaries for csi and beat #csi_trains = {} csi_rates = {} #beat = {} # for plotting and calculating iterate over delta f and phases for df in df_phase_time.keys(): #csi_trains[df] = {} csi_rates[df] = {} #beat[df] = [] beat_duration = int(abs(1/df*1000)*sampling_rate) #steps beat_window = 0 # beat window is at most 20 ms long, multiples of beat_duration while beat_window+beat_duration <= cut_window*sampling_rate: beat_window = beat_window+beat_duration for phase in df_phase_time[df].keys(): # csi calculation # trains for synchrony and rate trials_binary = df_phase_binary[df][phase] train_chirp = [] train_beat = [] #csi_spikerate = [] for i, trial in enumerate(trials_binary): smoothed_trial = smooth(trial, window, 1/sampling_rate) train_chirp.append(smoothed_trial[chirp_start:chirp_end]) train_beat.append(smoothed_trial[chirp_start-beat_window:chirp_start]) #std_chirp = np.std(smoothed_trial[chirp_start:chirp_end]) #std_beat = np.std(smoothed_trial[chirp_start-beat_window:chirp_start]) #csi = (std_chirp - std_beat)/(std_chirp + std_beat) #csi_spikerate.append(csi) std_chirp = np.std(np.mean(train_chirp, axis=0)) std_beat = np.std(np.mean(train_beat, axis=0)) #beat[df].append(std_beat) csi_spikerate = (std_chirp - std_beat) / (std_chirp + std_beat) csi_rates[df][phase] = np.mean(csi_spikerate) ''' rcs = [] rbs = [] for i, train in enumerate(train_chirp): for j, train2 in enumerate(train_chirp): if i >= j: continue else: rc, _ = ss.pearsonr(train, train2) rb, _ = ss.pearsonr(train_beat[i], train_beat[j]) rcs.append(rc) rbs.append(rb) r_train_chirp = np.mean(rcs) r_train_beat = np.mean(rbs) csi_train = (r_train_chirp - r_train_beat) / (r_train_chirp + r_train_beat) # add the csi to the dictionaries with the correct df and phase csi_trains[df].append(csi_train) # plot plot_trials = df_phase_time[df][phase] plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0) # calculation #overall_spikerate = (np.sum(plot_trials_binary)/len(plot_trials_binary))*sampling_rate*1000 smoothed_spikes = smooth(plot_trials_binary, window, 1./sampling_rate) fig, ax = plt.subplots(2, 1, sharex=True) for i, trial in enumerate(plot_trials): ax[0].scatter(trial, np.ones(len(trial))+i, marker='|', color='k') ax[1].plot(time_axis, smoothed_spikes*1000) ax[0].set_title(df) ax[0].set_ylabel('repetition', fontsize=12) ax[1].set_xlabel('time [ms]', fontsize=12) ax[1].set_ylabel('firing rate [Hz]', fontsize=12) plt.show() ''' colors = ['k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'firebrick'] sizes = [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 18] upper_limit = np.max(sorted(csi_rates.keys()))+30 lower_limit = np.min(sorted(csi_rates.keys()))-30 fig, ax = plt.subplots() ax.plot([lower_limit, upper_limit], np.zeros(2), 'silver', linewidth=2, linestyle='--') for i, df in enumerate(sorted(csi_rates.keys())): for j, phase in enumerate(sorted(csi_rates[df].keys())): ax.plot(df, csi_rates[df][phase], 'o', color=colors[j], ms=sizes[j]) fig.tight_layout() plt.show() ''' fig, ax = plt.subplots() for i, k in enumerate(sorted(beat.keys())): ax.plot(np.ones(len(beat[k]))*k, beat[k], 'o') fig.tight_layout() plt.show() fig, ax = plt.subplots() for i, k in enumerate(sorted(csi_trains.keys())): ax.plot(np.ones(len(csi_trains[k]))*i, csi_trains[k], 'o') ax.plot(np.arange(-1, len(csi_trains.keys())+1), np.zeros(len(csi_trains.keys())+2), 'silver', linewidth=2, linestyle='--') fig.tight_layout() plt.show() '''