diff --git a/code/plot_eodform_spikehist.py b/code/plot_eodform_spikehist.py index 24d3590..166fc3c 100644 --- a/code/plot_eodform_spikehist.py +++ b/code/plot_eodform_spikehist.py @@ -22,7 +22,7 @@ spikes = read_baseline_spikes(os.path.join(data_dir, dataset)) interspikeintervals = np.diff(spikes) fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor)) -plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.0001), color='darkblue') +plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.0001), color='royalblue') plt.xlabel("time [ms]", fontsize = 22) plt.xticks(fontsize = 18) plt.ylabel("number of \n interspikeintervals", fontsize = 22) @@ -32,8 +32,13 @@ ax.spines["right"].set_visible(False) fig.tight_layout() plt.show() #plt.show() +<<<<<<< HEAD #plt.savefig('isis.pdf') exit() +======= +plt.savefig('isis.png') + +>>>>>>> b9573c65638c8a716e57d75fbe550f0a1ef8859f # calculate coefficient of variation mu = np.mean(interspikeintervals) @@ -85,13 +90,13 @@ plt.yticks(fontsize=18) ax1.spines['top'].set_visible(False) ax2 = ax1.twinx() -ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='royalblue', alpha=0.5) +ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='navy', alpha=0.5) ax2.plot(time_axis, mu_eod, color='black', lw=2) ax2.set_ylabel('voltage [mV]', fontsize=22) -ax2.tick_params(axis='y', labelcolor='darkblue') +ax2.tick_params(axis='y', labelcolor='navy') ax2.spines['top'].set_visible(False) plt.yticks(fontsize=18) fig.tight_layout() #plt.show() -plt.savefig('eodform_spikehist.pdf') \ No newline at end of file +plt.savefig('eodform_spikehist.png') \ No newline at end of file diff --git a/code/repetition_firingrate.py b/code/repetition_firingrate.py index f1f05a4..56abf88 100644 --- a/code/repetition_firingrate.py +++ b/code/repetition_firingrate.py @@ -8,7 +8,7 @@ from IPython import embed # define sampling rate and data path sampling_rate = 40 #kHz data_dir = "../data" -dataset = "2018-11-13-aj-invivo-1" +dataset = "2018-11-14-al-invivo-1" inch_factor = 2.54 # parameters for binning, smoothing and plotting cut_window = 60 @@ -23,8 +23,8 @@ spike_bins = np.arange(-cut_window, cut_window+1) #ms # read data from files spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) -eod = read_chirp_eod(os.path.join(data_dir, dataset)) -chirp_times = read_chirp_times(os.path.join(data_dir, dataset)) +#eod = read_chirp_eod(os.path.join(data_dir, dataset)) +#chirp_times = read_chirp_times(os.path.join(data_dir, dataset)) # make a delta f map for the quite more complicated keys df_map = map_keys(spikes) @@ -42,12 +42,16 @@ for deltaf in df_map.keys(): df_phase_time[deltaf] = {} df_phase_binary[deltaf] = {} for rep in df_map[deltaf]: + chirp_size = int(rep[-1].strip('Hz')) + # print(chirp_size) + if chirp_size == 150: + continue for phase in spikes[rep]: for idx in np.arange(num_bin): # check the phase if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]: - # get spikes between 50 ms befor and after the chirp + # get spikes between 60 ms before and after the chirp spikes_to_cut = np.asarray(spikes[rep][phase]) spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < cut_window)] spikes_idx = np.round(spikes_cut*sampling_rate) @@ -98,5 +102,5 @@ for df in df_phase_time.keys(): fig.tight_layout() #plt.show() #exit() - namefigure = '../figures/%s_%i_%i_firingrate.pdf' %(dataset, df, index_phase) - plt.savefig(namefigure) \ No newline at end of file + namefigure = '../figures/%s_%i_%i_firingrate.png' %(dataset, df, index_phase) + plt.savefig(namefigure) diff --git a/code/stimulus_chirp.py b/code/stimulus_chirp.py index 5208d60..f45827c 100644 --- a/code/stimulus_chirp.py +++ b/code/stimulus_chirp.py @@ -40,8 +40,8 @@ ax1 = fig.add_subplot(211) plt.yticks(fontsize=18) ax2 = fig.add_subplot(212, sharex=ax1) plt.setp(ax1.get_xticklabels(), visible=False) -ax1.plot(time*1000, signal, color = 'royalblue', lw = 1) -ax2.plot(time*1000, freq, color = 'royalblue', lw = 3) +ax1.plot(time*1000, signal, color = 'midnightblue', lw = 1) +ax2.plot(time*1000, freq, color = 'midnightblue', lw = 3) ax1.set_ylabel("field [mV]", fontsize = 22) @@ -54,4 +54,4 @@ plt.xticks(fontsize=18) plt.yticks(fontsize=18) fig.tight_layout() #plt.show() -plt.savefig('stimulus_chirp.pdf') +plt.savefig('stimulus_chirp.png')