diff --git a/code/plot_eodform_spikehist.py b/code/plot_eodform_spikehist.py index 7c6be52..1983d46 100644 --- a/code/plot_eodform_spikehist.py +++ b/code/plot_eodform_spikehist.py @@ -14,21 +14,19 @@ dataset = '2018-11-14-al-invivo-1' # read eod and time of baseline time, eod = read_baseline_eod(os.path.join(data_dir, dataset)) -<<<<<<< HEAD + eod_norm = eod - np.mean(eod) # calculate eod times and indices by zero crossings threshold = 0 shift_eod = np.roll(eod_norm, 1) -eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)] +eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)]*40000 eod_duration = eod_times[2]- eod_times[1] -======= ->>>>>>> 5cd62554fa5af12a6a50661f0a60cd2b0457e702 # read spikes during baseline activity spikes = read_baseline_spikes(os.path.join(data_dir, dataset)) # calculate interpike intervals and plot them diff --git a/code/stimulus_chirp.py b/code/stimulus_chirp.py index f45827c..ad9336b 100644 --- a/code/stimulus_chirp.py +++ b/code/stimulus_chirp.py @@ -40,8 +40,8 @@ ax1 = fig.add_subplot(211) plt.yticks(fontsize=18) ax2 = fig.add_subplot(212, sharex=ax1) plt.setp(ax1.get_xticklabels(), visible=False) -ax1.plot(time*1000, signal, color = 'midnightblue', lw = 1) -ax2.plot(time*1000, freq, color = 'midnightblue', lw = 3) +ax1.plot(time*1000, signal, color = 'royalblue', lw = 1) +ax2.plot(time*1000, freq, color = 'royalblue', lw = 3) ax1.set_ylabel("field [mV]", fontsize = 22)