This commit is contained in:
efish 2018-11-27 14:58:25 +01:00
parent fb5627a794
commit e6fafa2f72
4 changed files with 226 additions and 135 deletions

View File

@ -8,66 +8,51 @@ from IPython import embed
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
#data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1","2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
#for dataset in data:
eod = read_chirp_eod(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
df_map = map_keys(eod)
for dataset in data:
print(dataset)
eod = read_chirp_eod(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
df_map = map_keys(eod)
sort_df = sorted(df_map.keys())
chirp_eod_plot(df_map, eod, times)
plt.close()
chirp_eod_plot(df_map, eod, times)
#ACHTUNG: df für beide Plots anpassen!
#momentan per Hand durch alle Frequenzen
freq = list(df_map[-100])
ls_mod = []
ls_beat = []
for k in freq:
e1 = eod[k]
zeit = np.asarray(e1[0])
ampl = np.asarray(e1[1])
ct = times[k]
for chirp in ct:
time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)]
eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)]
beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)]
chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp
ls_mod.append(chirp_mod)
ls_beat.extend(beat_cut)
chirp_mods = []
beat_mods = []
for i in sort_df:
freq = list(df_map[i])
ls_mod, beat_mod = cut_chirps(freq, eod, times)
chirp_mods.append(ls_mod)
beat_mods.append(beat_mod)
beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp
plt.figure()
plt.scatter(np.arange(0,len(ls_mod),1), ls_mod)
plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))*beat_mod, color = 'violet')
plt.close()
#Chirps einer Phase zuordnen - zusammen plotten
#Chirps einer Phase zuordnen - zusammen plotten
dct_phase = {}
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
sort_df = sorted(df_map.keys())
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
sort_df = sorted(df_map.keys())
num_bin = 12
phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin)
#plot_std_chirp(sort_df, df_map, chirp_spikes, chirp_mods)
for i in sort_df:
freq = list(df_map[i])
dct_phase[i] = []
for k in freq:
for phase in chirp_spikes[k]:
dct_phase[i].append(phase[1])
plt.figure()
plt.scatter(dct_phase[-100], ls_mod)
plt.title('Change of std depending on the phase where the chirp occured')
plt.show()
#Vatriablen speichern, die man für die Übersicht aller Zellen braucht
name = str(dataset.strip('invivo-1'))
f = open('../results/Chirpcut/Cc_' + name + '.dat' , 'w')
f.write(str(sort_df))
f.write(str(df_map))
f.write(str(chirp_spikes))
f.write(str(eod))
f.write(str(times))
#f.write(str(chirp_mods))
#f.write(str(beat_mods))
f.close()

View File

@ -1,95 +1,93 @@
from read_baseline_data import *
from read_chirp_data import *
from utility import *
#import nix_helpers as nh
from func_spike import *
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed #Funktionen imposrtieren
data_dir = "../data"
dataset = "2018-11-13-ad-invivo-1"
#data = ("2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1") Durchgang für alle Datensets - zwischenspeichern von Daten?
data_base = ("2018-11-09-ab-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-af-invivo-1", "2018-11-13-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
data_chirps = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
'''
for dataset in data_base:
spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))
spike_iv = np.diff(spike_times)
print(dataset)
spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))
spike_iv = np.diff(spike_times)
x = np.arange(0.001, 0.01, 0.0001)
plt.hist(spike_iv,x)
mu = np.mean(spike_iv)
sigma = np.std(spike_iv)
cv = sigma/mu
x = np.arange(0.001, 0.01, 0.0001)
plt.hist(spike_iv,x)
plt.title('A.lepto ISI Histogramm', fontsize = 14)
plt.xlabel('duration ISI[ms]', fontsize = 12)
plt.ylabel('number of ISI', fontsize = 12)
mu = np.mean(iv)
sigma = np.std(iv)
cv = sigma/mu
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
'''
plt.title('A.lepto ISI Histogramm', fontsize = 14)
plt.xlabel('duration ISI[ms]', fontsize = 12)
plt.ylabel('number of ISI', fontsize = 12)
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
plt.show()
for dataset in data_chirps:
#Nyquist-Theorem Plot:
print(dataset)
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
eod = read_chirp_eod(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
sort_df = sorted(df_map.keys())
dct_rate, over_r = spike_rates(sort_df, df_map, chirp_spikes)
#Nyquist-Theorem Plot:
plt.figure()
ls_mean = plot_df_spikes(sort_df, dct_rate)
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
sort_df = sorted(df_map.keys())
plt.figure()
dct_rate = {}
overall_r = {}
for i in sort_df:
freq = list(df_map[i])
dct_rate[i] = []
overall_r[i] = []
for k in freq:
for phase in chirp_spikes[k]:
spikes = chirp_spikes[k][phase]
rate = len(spikes)/ 1.2
dct_rate[i].append(rate)
#overall_r[i].extend(rate) #kann man nicht erweitern!
ls_mean = []
for h in sort_df:
mean = np.mean(dct_rate[h])
ls_mean.append(mean)
plt.plot(np.arange(0,len(dct_rate[h]),1),dct_rate[h], label = h)
#mittlere Feuerrate einer Frequenz auf Frequenz:
#plt.vlines(10, ymin = 190, ymax = 310)
#Anfang Spur und Endpunkt bestimmen
#relativ zur mittleren Feuerrate
#wie hoch ist die Adaption von Zellen
plt.legend()
plt.title('Firing rate of the cell for all trials, sorted by df')
plt.xlabel('# of trials')
plt.ylabel('Instant firing rate of the cell')
plt.show()
plt.figure()
plt.plot(np.arange(0,len(ls_mean),1),ls_mean)
plt.scatter(np.arange(0,len(ls_mean),1), np.ones(len(ls_mean))*over_r)
plt.title('Mean firing rate of a cell for a range of frequency differences')
plt.xticks(np.arange(1,len(sort_df),1), (sort_df))
plt.xlabel('Range of frequency differences [Hz]')
plt.ylabel('Mean firing rate of the cell')
#mittlere Feuerrate einer Frequenz auf Frequenz:
plt.figure()
plt.plot(np.arange(0,len(ls_mean),1),ls_mean)
#plt.scatter(np.arange(0,len(ls_mean),1), np.mean(int(overall_r)))
plt.title('Mean firing rate of a cell for a range of frequency differences')
plt. xticks(np.arange(1,len(sort_df),1), (sort_df))
plt.xlabel('Range of frequency differences [Hz]')
plt.ylabel('Mean firing rate of the cell')
plt.show()
#Adaption der Zellen:
#wie viel Prozent der Anfangsrate macht die Adaption von Zellen aus?
adapt = adaptation_df(sort_df, dct_rate)
plt.figure()
plt.boxplot(adapt)
plt.title('Adaptation of cell firing rate during a trial')
plt.xlabel('Cell')
plt.ylabel('Adaptation size [Hz]')
#Boxplot
#wie viel Prozent macht die Adaption von Zellen aus?
#Reihen-Plot
#macht die zeitliche Reihenfolge der Präsentation einen Unterschied in der Zellantwort?
#Vatriablen speichern, die man für die Übersicht aller Zellen braucht
name = str(dataset.strip('invivo-1'))
f = open('../results/Nyquist/Ny_' + name + '.txt' , 'w')
f.write(str(sort_df))
f.write(str(df_map))
f.write(str(chirp_spikes))
f.write(str(times))
f.write(str(ls_mean))
f.write(str(over_r))
f.write(str(adapt))
f.close()

View File

@ -10,32 +10,78 @@ def chirp_eod_plot(df_map, eod, times):
#die innnere Schleife bildet die 16 Wiederholungen einer Frequenz ab
for i in df_map.keys():
freq = list(df_map[i])
fig,axs = plt.subplots(2, 2, sharex = True, sharey = True)
freq = list(df_map[i])
fig,axs = plt.subplots(2, 2, sharex = True, sharey = True)
for idx, k in enumerate(freq):
ct = times[k]
e1 = eod[k]
zeit = e1[0]
eods = e1[1]
for idx, k in enumerate(freq):
ct = times[k]
e1 = eod[k]
zeit = e1[0]
eods = e1[1]
if idx <= 3:
axs[0, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[0, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
elif 4<= idx <= 7:
axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
elif 8<= idx <= 11:
axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
else:
axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
fig.suptitle('EOD for chirps', fontsize = 16)
axs[0,0].set_ylabel('Amplitude [mV]')
axs[0,1].set_xlabel('Amplitude [mV]')
axs[1,0].set_xlabel('Time [ms]')
axs[1,1].set_xlabel('Time [ms]')
plt.show()
if idx <= 3:
axs[0, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[0, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
elif 4<= idx <= 7:
axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
elif 8<= idx <= 11:
axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
else:
axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
fig.suptitle('EOD for chirps', fontsize = 16)
axs[0,0].set_ylabel('Amplitude [mV]')
axs[0,1].set_xlabel('Amplitude [mV]')
axs[1,0].set_xlabel('Time [ms]')
axs[1,1].set_xlabel('Time [ms]')
plt.close()
def cut_chirps(freq, eod, times):
ls_mod = []
ls_beat = []
for k in freq:
e1 = eod[k]
zeit = np.asarray(e1[0])
ampl = np.asarray(e1[1])
ct = times[k]
for chirp in ct:
time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)]
eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)]
beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)]
chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp
ls_mod.append(chirp_mod)
ls_beat.extend(beat_cut)
beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp
plt.figure()
plt.scatter(np.arange(0,len(ls_mod),1), ls_mod)
plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))*beat_mod, color = 'violet')
plt.close()
return(ls_mod, beat_mod)
def plot_std_chirp(sort_df, df_map, chirp_spikes, ls_mod):
plt.figure()
dct_phase = {}
num_bin = 12
phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin)
for i in sort_df:
freq = list(df_map[i])
dct_phase[i] = []
for k in freq:
for phase in chirp_spikes[k]:
dct_phase[i].append(phase[1])
plt.scatter(dct_phase[i], ls_mod[i])
plt.title('Change of std depending on the phase where the chirp occured')
plt.close()

View File

@ -5,3 +5,65 @@ import matplotlib.pyplot as plt
import numpy as np
def map_keys(input):
#gibt ein Dict mit den Keys eines Dict aus, aber als Int
df_map = {}
for k in input.keys():
freq = k[1]
df = int(freq.strip('Hz'))
if df in df_map.keys():
df_map[df].append(k)
else:
df_map[df] = [k]
return df_map
def spike_rates(sort_df, df_map, chirp_spikes):
#damit wird sowohl die individuelle Rate pro Trial, als auch die Gesamt-Feuerrate berechnet
dct_rate = {}
over_spikes = []
for i in sort_df:
freq = list(df_map[i])
dct_rate[i] = []
for k in freq:
for phase in chirp_spikes[k]:
spikes = chirp_spikes[k][phase]
rate = len(spikes)/ 1.2
dct_rate[i].append(rate)
over_spikes.extend(spikes)
duration = 1.2 *1600 #1200ms für 16 Trials
overall_r = len(over_spikes)/ duration
over_r = int(overall_r)
return(dct_rate, over_r)
def plot_df_spikes(sort_df, dct_rate):
#gibt die Feuerrate gegen die Frequenz aufgetragen
ls_mean = []
for h in sort_df:
mean = np.mean(dct_rate[h])
ls_mean.append(mean)
plt.plot(np.arange(0,len(dct_rate[h]),1),dct_rate[h], label = h)
plt.legend()
plt.title('Firing rate of the cell for all trials, sorted by df')
plt.xlabel('# of trials')
plt.ylabel('Instant firing rate of the cell')
return(ls_mean)
def adaptation_df(sort_df, dct_rate):
adapt = []
for d in sort_df:
spur = dct_rate[d]
start = spur[0:-1:10]
stop = spur[9:len(spur):10]
diff = np.asarray(start) - np.asarray(stop)
adapt.extend(diff)
return(adapt)