This commit is contained in:
Jan Grewe 2018-11-19 14:12:18 +01:00
commit d257383613
13 changed files with 536 additions and 79 deletions

188
code/NixFrame.py Normal file
View File

@ -0,0 +1,188 @@
import nixio as nix
from IPython import embed
import numpy as np
import os
import pandas as pd
import pickle
def DataFrame(nixfile, savefile=False, saveto='./'):
'''
opens a nix file, extracts the data and converts it to a pandas.DataFrame
:param nixfile (string): path and name of .nix file
:param savefile (string): if not False, the dataframe will be saved as <savefile>.pickle
:param saveto (string): path to save the files in NOT IMPLEMENTED YET
:return dataframe (pandas.DataFrame): pandas.DataFrame with available nix data
'''
block = nix.File.open(nixfile,'r').blocks[0]
data_arrays = block.data_arrays
names = [data_arrays[i].name for i in range(len(data_arrays))]
shapes = [x.shape for x in data_arrays]
data_names = np.array([[x,i] for i,x in enumerate(names) if (shapes[i][0] >= 0.999*shapes[0][0])])
data_traces = np.array([data_arrays[name][:] for name,idx in data_names])
time = data_arrays[1].dimensions[0].axis(data_arrays[1].shape[0])
dt = time[1]-time[0]
block_metadata = {}
block_metadata[block.id] = getMetadataDict(block.metadata)
tag = block.tags
tag_metadata = {}
tag_id_times = {}
for i in range(len(tag)):
meta = tag[i].metadata
tag_metadata[meta.id] = getMetadataDict(meta)
tag_id_times[meta.id] = [tag[i].position[0], tag[i].position[0]+tag[i].extent[0]]
data = []
stim_num = -1
protocol_idcs = np.where([' onset times' in name for name in names])[0]
for i in range(len(protocol_idcs)):
# print(names[int(protocol_idcs[i])].split(' onset times')[0])
protocol = names[protocol_idcs[i]].split(' onset times')[0]
#skip certain protocols
if 'VC=' in protocol:
# print('skip this protocol')
continue
#number of meta data entries
if i == len(protocol_idcs)-1:
meta_len = len(names) - protocol_idcs[i]
else:
meta_len = protocol_idcs[i+1] - protocol_idcs[i]
#get new line for every sweep and save the data, make a pn subtraction if necessary
if any([protocol + '_pn' == string for string in names[protocol_idcs[i]:protocol_idcs[i]+meta_len]]):
pn = data_arrays[protocol + '_pn'][0]
sweeps = np.arange(np.abs(pn),len(data_arrays[int(protocol_idcs[i])][:]),(np.abs(pn)+1), dtype=int)
else:
pn = np.nan
sweeps = np.arange(len(data_arrays[int(protocol_idcs[i])][:]), dtype=int)
for sweep in sweeps:
stim_num +=1
data.append({})
# save protocol names
split_vec = protocol.split('-')
if len(split_vec)>2:
prot_name = split_vec[0]
prot_num = int(split_vec[-1])
for j in range(len(split_vec)-2):
prot_name += '-' + split_vec[j+1]
else:
prot_name = split_vec[0]
prot_num = split_vec[-1]
data[stim_num]['protocol'] = prot_name
data[stim_num]['protocol_number'] = prot_num
#save id
data[stim_num]['id'] = data_arrays[int(protocol_idcs[i])].id
#save rest of stored data
for idx in range(meta_len):
j = int(protocol_idcs[i] + idx)
if (' durations' in names[j]) or (' onset times' in names[j]):
continue
if len(data_arrays[j][sweep]) == 1:
data[stim_num][names[j].split(protocol + '_')[-1]] = data_arrays[j][sweep][0]
else:
data[stim_num][names[j].split(protocol+'_')[-1]] = data_arrays[j][sweep]
data[stim_num]['samplingrate'] = 1/dt
#save data arrays
onset = data_arrays[protocol + ' onset times'][sweep]
dur = data_arrays[protocol + ' durations'][sweep]
t0 = int(onset/dt)
t1 = int((onset+dur)/dt+1)
data[stim_num]['onset time'] = onset
data[stim_num]['duration'] = dur
for name,idx in data_names:
data[stim_num][name] = data_traces[int(idx)][t0:t1]
for j in np.arange(int(idx)+1,protocol_idcs[0]):
bool_vec = (data_arrays[names[j]][:]>=onset) & (data_arrays[names[j]][:]<=onset+dur)
data[stim_num][names[j]] = np.array(data_arrays[names[j]])[bool_vec]
data[stim_num]['time'] = time[t0:t1] - data[stim_num]['onset time']
#pn-subtraction (if necessary)
'''
change the location of the pn (its already in the metadata, you dont need it as option
'''
if pn != np.nan and np.abs(pn)>0:
pn_curr = np.zeros(len(data[stim_num][name]))
idx = np.where(data_names[:,0] == 'Current-1')[0][0]
for j in range(int(np.abs(pn))):
onset = data_arrays[protocol + ' onset times'][sweep-j-1]
t0 = int(onset / dt)
t1 = int(onset/dt + len(data[stim_num]['Current-1']))
pn_curr += data_traces[int(idx),t0:t1]
data[stim_num]['Current-2'] = data[stim_num]['Current-1'] - pn/np.abs(pn)*pn_curr #- data[stim_num][name][0] - pn_curr[0]
'''
this one saves the complete metadata in EVERY line
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!THINK OF SOMETHING BETTER!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
'''
tag_id = None
for key in tag_id_times.keys():
if (data[stim_num]['onset time'] >= tag_id_times[key][0]) and (data[stim_num]['onset time'] <= tag_id_times[key][1]):
tag_id = key
# # save metadata
data[stim_num]['block_meta'] = block_metadata[list(block_metadata.keys())[0]]
data[stim_num]['tag_meta'] = tag_metadata[tag_id]
# add block id
data[stim_num]['block_id'] = list(block_metadata.keys())[0]
data[stim_num]['tag_id'] = tag_id
data = pd.DataFrame(data)
if savefile != False:
if savefile == True:
savefile = nixfile.split('/')[-1].split('.nix')[0]
with open(savefile + '_dataframe.pickle', 'wb') as f:
pickle.dump(data, f, -1) # create pickle-files, using the highest pickle-protocol
# embed()
return data
def NixToFrame(folder):
'''
searches subfolders of folder to convert .nix files to a pandas dataframe and saves them in the folder
:param folder: path to folder that contains subfolders of year-month-day-aa style that contain .nix files
'''
if folder[-1] != '/':
folder = folder + '/'
dirlist = os.listdir(folder)
for dir in dirlist:
if os.path.isdir(folder + dir):
for file in os.listdir(folder+dir):
if '.nix' in file:
print(file)
DataFrame(folder+dir+'/'+file, True, folder)
def load_data(filename):
with open(filename, 'rb') as f:
data = pickle.load(f) # load data with pickle
return data
def getMetadataDict(metadata):
def unpackMetadata(sec):
metadata = dict()
metadata = {prop.name: sec[prop.name] for prop in sec.props}
if hasattr(sec, 'sections') and len(sec.sections) > 0:
metadata.update({subsec.name: unpackMetadata(subsec) for subsec in sec.sections})
return metadata
return unpackMetadata(metadata)

View File

@ -1,60 +1,94 @@
import numpy as np
import matplotlib.pyplot as plt
from read_baseline_data import *
from NixFrame import *
from utility import *
from IPython import embed
# plot and data values
inch_factor = 2.54
data_dir = '../data'
dataset = '2018-11-09-ad-invivo-1'
# read eod and time of baseline
time, eod = read_baseline_eod(os.path.join(data_dir, dataset))
fig = plt.figure(figsize=(12/inch_factor, 8/inch_factor))
ax = fig.add_subplot(111)
fig, ax = plt.subplots(figsize=(12/inch_factor, 8/inch_factor))
ax.plot(time[:1000], eod[:1000])
ax.set_xlabel('time [ms]', fontsize=12)
ax.set_ylabel('voltage [mV]', fontsize=12)
plt.xticks(fontsize=8)
plt.yticks(fontsize=8)
fig.tight_layout()
plt.savefig('eod.pdf')
#interspikeintervalhistogram, windowsize = 1 ms
#plt.hist
#coefficient of variation
#embed()
#exit()
#plt.savefig('eod.pdf')
plt.show()
# read spikes during baseline activity
spikes = read_baseline_spikes(os.path.join(data_dir, dataset))
# calculate interpike intervals and plot them
interspikeintervals = np.diff(spikes)
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12/inch_factor, 8/inch_factor))
plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.0001))
plt.show()
# calculate coefficient of variation
mu = np.mean(interspikeintervals)
sigma = np.std(interspikeintervals)
cv = sigma/mu
print(cv)
# calculate zero crossings of the eod
# plot mean of eod circles
# plot std of eod circles
# plot psth into the same plot
# calculate vector strength
threshold = 0;
# calculate eod times and indices by zero crossings
threshold = 0
shift_eod = np.roll(eod, 1)
eod_times = time[(eod >= threshold) & (shift_eod < threshold)]
sampling_rate = 40000.0
eod_idx = eod_times*sampling_rate
fig = plt.figure()
for i, idx in enumerate(eod_idx):
#embed()
#exit()
plt.plot(time[int(idx):int(eod_idx[i+1])], eod[int(idx):int(eod_idx[i+1])])
# align eods and spikes to eods
max_cut = int(np.max(np.diff(eod_idx)))
eod_cuts = np.zeros([len(eod_idx)-1, max_cut])
spike_times = []
eod_durations = []
for i, idx in enumerate(eod_idx[:-1]):
eod_cut = eod[int(idx):int(eod_idx[i+1])]
eod_cuts[i, :len(eod_cut)] = eod_cut
eod_cuts[i, len(eod_cut):] = np.nan
time_cut = time[int(idx):int(eod_idx[i+1])]
spike_cut = spikes[(spikes > time_cut[0]) & (spikes < time_cut[-1])]
spike_time = spike_cut - time_cut[0]
if len(spike_time) > 0:
spike_times.append(spike_time[:][0]*1000)
eod_durations.append(len(eod_cut)/sampling_rate*1000)
# calculate vector strength
vs = vector_strength(spike_times, eod_durations)
# determine means and stds of eod for plot
# determine time axis
mu_eod = np.nanmean(eod_cuts, axis=0)
std_eod = np.nanstd(eod_cuts, axis=0)*3
time_axis = np.arange(max_cut)/sampling_rate*1000
# plot eod form and spike histogram
fig, ax1 = plt.subplots(figsize=(12/inch_factor, 8/inch_factor))
ax1.hist(spike_times, color='crimson')
ax1.set_xlabel('time [ms]', fontsize=12)
ax1.set_ylabel('number', fontsize=12)
ax1.tick_params(axis='y', labelcolor='crimson')
plt.yticks(fontsize=8)
ax1.spines['top'].set_visible(False)
ax2 = ax1.twinx()
ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='dodgerblue', alpha=0.5)
ax2.plot(time_axis, mu_eod, color='black', lw=2)
ax2.set_ylabel('voltage [mV]', fontsize=12)
ax2.tick_params(axis='y', labelcolor='dodgerblue')
plt.xticks(fontsize=8)
plt.yticks(fontsize=8)
fig.tight_layout()
plt.show()
#NixToFrame(data_dir)

75
code/base_chirps.py Normal file
View File

@ -0,0 +1,75 @@
from read_chirp_data import *
#import nix_helpers as nh
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1")
#for dataset in data:
eod = read_chirp_eod(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
df_map = {} #Keys werden nach df sortiert ausgegeben
for k in eod.keys():
df = k[1]
ch = k[3]
if df in df_map.keys():
df_map[df].append(k)
else:
df_map[df] = [k]
print(ch) #die Chirphöhe wird ausgegeben, um zu bestimmen, ob Chirps oder Chirps large benutzt wurde
#die äußere Schleife geht für alle Keys durch und somit durch alle dfs
#die innnere Schleife bildet die 16 Wiederholungen einer Frequenz in 4 Subplots ab
for idx in df_map.keys():
freq = list(df_map[idx])
fig,axs = plt.subplots(2, 2, sharex = True, sharey = True)
for idx, k in enumerate(freq):
ct = times[k]
e1 = eod[k]
zeit = e1[0]
eods = e1[1]
if idx <= 3:
axs[0, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[0, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
elif 4<= idx <= 7:
axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
elif 8<= idx <= 11:
axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
else:
axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
fig.suptitle('EOD for chirps', fontsize = 16)
plt.show()
#Problem: axs hat keine label-Funktion, also müsste axes nochmal definiert werden. Momentan erscheint Schrift nur auf einem der Subplots
#ax = plt.gca()
#ax.set_ylabel('Time [ms]')
#ax.set_xlabel('Amplitude [mV]')
#ax.label_outer()
#next Step: relative Amplitudenmodulation berechnen, Max und Min der Amplitude bestimmen, EOD und Chirps zuordnen, Unterschied berechnen

21
code/base_eod.py Normal file
View File

@ -0,0 +1,21 @@
from read_baseline_data import *
#import nix_helpers as nh
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed #Funktionen importieren
data_dir = "../data"
dataset = "2018-11-09-aa-invivo-1"
#data = ("2018-11-09-aa-invivo-1", "2018-11-09-ab-invivo-1", "2018-11-09-ac-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1")
time,eod = read_baseline_eod(os.path.join(data_dir, dataset))
zeit = np.asarray(time)
plt.plot(zeit[0:1000], eod[0:1000])
plt.title('A.lepto EOD')#Plottitelk
plt.xlabel('Time [ms]', fontsize = 12)#Achsentitel
plt.ylabel('Amplitude[mv]', fontsize = 12)#Achsentitel
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
plt.show()

34
code/base_spikes.py Normal file
View File

@ -0,0 +1,34 @@
from read_baseline_data import *
#import nix_helpers as nh
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed #Funktionen importieren
data_dir = "../data"
dataset = "2018-11-09-aa-invivo-1"
#data = ("2018-11-09-aa-invivo-1", "2018-11-09-ab-invivo-1", "2018-11-09-ac-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1")
spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))
#spike_frequency = len(spike_times) / spike_times[-1]
#inst_frequency = 1. / np.diff(spike_times)
spike_rate = np.diff(spike_times)
x = np.arange(0.001, 0.01, 0.0001)
plt.hist(spike_rate,x)
mu = np.mean(spike_rate)
sigma = np.std(spike_rate)
cv = sigma/mu
print(cv)
plt.title('A.lepto ISI Histogramm', fontsize = 14)
plt.xlabel('duration ISI[ms]', fontsize = 12)
plt.ylabel('number of ISI', fontsize = 12)
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
plt.show()

View File

@ -1,33 +0,0 @@
import numpy as np
import matplotlib.pyplot as plt
freq = 800
freq2 = 820
dt = 0.00001
x = np.arange(0.0, 1.0, dt)
eod = np.sin(x * 2 * np.pi * freq) + np.sin(x * 2 * np.pi * freq * 2) * 0.5
eod2 = np.sin(x * 2 * np.pi * freq2) + np.sin(x * 2 * np.pi * freq2 * 2) * 0.5
fig = plt.figure(figsize=(5., 7.5))
ax= fig.add_subplot(311)
ax.plot(x, eod, color="darkgreen", linewidth = 1.0)
ax.set_xlim(0.0, 0.1)
ax.set_ylabel("voltage [mV]")
ax= fig.add_subplot(312)
ax.plot(x, eod2, color="crimson", linewidth = 1.0)
ax.set_xlim(0.0, 0.1)
ax.set_ylabel("voltage [mV]")
ax= fig.add_subplot(313)
ax.plot(x, eod + eod2 * 0.05, color="lightblue", linewidth = 1.0)
ax.set_xlim(0.0, 0.1)
ax.set_xlabel("time [s]")
ax.set_ylabel("voltage [mV]")
plt.tight_layout()
plt.savefig("eods.pdf")
plt.show()

View File

43
code/liste.py Normal file
View File

@ -0,0 +1,43 @@
# 9.11.18
aa: quality: poor, depth: -1341, base
ab: quality: poor, depth: -1341, base
ac: quality: good, depth: -1341, base
ad: quality: good, depth: -200, base, chirps
ae: quality: good, depth: -200, chirps
af: quality: good, depth: -200
ag: no info.dat, chirps
# 13.11.18
aa: good, -30 µm, maybe no reaction, base, chirps
ab: good, -309 µm, base
ac: poor, -309 µm, chirps
ad: fair, -360 µm, base, chirps
ae: fair, -350 µm
af: good, -440 µm, bursting, base
ag: fair, -174 µm, base
ah: good, -209 µm, base, chirps, FI, SAM
ai: good, -66.9 µm, base, chirps, SAM
aj: good, -132 µm, base, chirps
ak: good, -284 µm, base, chirps
al: good, -286 µm, base, chirps, SAM
# 14.11.18
aa: good, -184 µm, base, chirps, FI, SAM, noise
ab: fair, -279 µm, no reaction, base
ac: fair, -60 µm, base, chirps
ad: good, -357 µm, base, chirps
ae: fair, -357 µm, base
af: fair, -527 µm, base, (chirps)
ag: fair, -533 µm, base, chirps
ah: poor, -505 µm, chirps
ai: good, -500 µm, still same cell 3x, chirps, FI, noise
aj: poor, -314 µm, no modulation, base
ak: good, -140 µm, base, chirps, FI, SAM, noise
al: good, -280 µm, base, chirps, SAM
am: good, -320 µm, base, chirps, FI, SAM, noise
an: good, -434 µm, base, chirps, FI, SAM, noise

View File

@ -7,7 +7,13 @@ def read_baseline_eod(dataset):
base = dataset.split(os.path.sep)[-1] + ".nix"
nix_file = nix.File.open(os.path.join(dataset, base), nix.FileMode.ReadOnly)
b = nix_file.blocks[0]
if 'BaselineActivity_1' in b.tags:
t = b.tags["BaselineActivity_1"]
elif "BaselineActivity_2" in b.tags:
t = b.tags["BaselineActivity_2"]
else:
f.close()
return [],[]
eod_da = b.data_arrays["LocalEOD-1"]
eod = t.retrieve_data("LocalEOD-1")[:]
time = np.asarray(eod_da.dimensions[0].axis(len(eod)))
@ -19,7 +25,13 @@ def read_baseline_spikes(dataset):
base = dataset.split(os.path.sep)[-1] + ".nix"
nix_file = nix.File.open(os.path.join(dataset, base), nix.FileMode.ReadOnly)
b = nix_file.blocks[0]
if 'BaselineActivity_1' in b.tags:
t = b.tags["BaselineActivity_1"]
elif "BaselineActivity_2" in b.tags:
t = b.tags["BaselineActivity_2"]
else:
f.close()
return [],[]
spikes_da = b.data_arrays["Spikes-1"]
spike_times = spikes_da[:spikes_da.shape[0]-5000]
baseline_spikes = spike_times[(spike_times > t.position[0]) & (spike_times < (t.position[0] + t.extent[0]))]

View File

@ -2,7 +2,7 @@ import numpy as np
import os
def load_chirp_spikes(dataset):
def read_chirp_spikes(dataset):
spikes_file = os.path.join(dataset, "chirpspikess1.dat")
if not os.path.exists(spikes_file):
print("found no chirps!")
@ -15,11 +15,11 @@ def load_chirp_spikes(dataset):
if "index" in l and "chirp" not in l:
index = int(l.split(":")[-1])
if "deltaf" in l and "true" not in l:
df = l.split(":")[-1]
df = l.split(":")[-1].strip()
if "contrast" in l and "true" not in l:
contrast = l.split(":")[-1]
contrast = l.split(":")[-1].strip()
if "chirpsize" in l:
cs = l.split(":")[-1]
cs = l.split(":")[-1].strip()
if "#Key" in l:
spikes[(index, df, contrast, cs)] = {}
if "chirp index" in l:
@ -32,7 +32,7 @@ def load_chirp_spikes(dataset):
return spikes
def load_chirp_eod(dataset):
def read_chirp_eod(dataset):
eod_file = os.path.join(dataset, "chirpeodampls.dat")
if not os.path.exists(eod_file):
print("found no chirpeodampls.dat!")
@ -45,11 +45,11 @@ def load_chirp_eod(dataset):
if "index" in l and "chirp" not in l:
index = int(l.split(":")[-1])
if "deltaf" in l and "true" not in l:
df = l.split(":")[-1]
df = l.split(":")[-1].strip()
if "contrast" in l and "true" not in l:
contrast = l.split(":")[-1]
contrast = l.split(":")[-1].strip()
if "chirpsize" in l:
cs = l.split(":")[-1]
cs = l.split(":")[-1].strip()
if "#Key" in l:
chirp_eod[(index, df, contrast, cs)] = ([], [])
if len(l.strip()) != 0 and "#" not in l:
@ -60,7 +60,7 @@ def load_chirp_eod(dataset):
return chirp_eod
def load_chirp_times(dataset):
def read_chirp_times(dataset):
chirp_times_file = os.path.join(dataset, "chirpss.dat")
if not os.path.exists(chirp_times_file):
print("found no chirpss.dat!")
@ -73,15 +73,15 @@ def load_chirp_times(dataset):
if "index" in l and "chirp" not in l:
index = int(l.split(":")[-1])
if "deltaf" in l and "true" not in l:
df = l.split(":")[-1]
df = l.split(":")[-1].strip()
if "contrast" in l and "true" not in l:
contrast = l.split(":")[-1]
contrast = l.split(":")[-1].strip()
if "chirpsize" in l:
cs = l.split(":")[-1]
cs = l.split(":")[-1].strip()
if "#Key" in l:
chirp_times[(index, df, contrast, cs)] = []
if len(l.strip()) != 0 and "#" not in l:
chirp_times[(index, df, contrast, cs)].append(float(l.split()[1]))
chirp_times[(index, df, contrast, cs)].append(float(l.split()[1]) * 1000.)
return chirp_times

51
code/spikes_analysis.py Normal file
View File

@ -0,0 +1,51 @@
import matplotlib.pyplot as plt
import numpy as np
from read_chirp_data import *
from utility import *
from IPython import embed
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
eod = read_chirp_eod(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
df_map = {}
for k in spikes.keys():
df = k[1]
if df in df_map.keys():
df_map[df].append(k)
else:
df_map[df] = [k]
# make phases together, 12 phases
spikes_mat = {}
for deltaf in df_map.keys():
for rep in df_map[deltaf]:
for phase in spikes[rep]:
#print(phase)
spikes_one_chirp = spikes[rep][phase]
if deltaf == '-50Hz' and phase == (9, 0.54):
spikes_mat[deltaf, rep, phase] = spikes_one_chirp
plot_spikes = spikes[(0, '-50Hz', '20%', '100Hz')][(0, 0.789)]
mu = 1
sigma = 1
time_gauss = np.arange(-4, 4, 1)
gauss = gaussian(time_gauss, mu, sigma)
# spikes during time vec (00010000001)?
smoothed_spikes = np.convolve(plot_spikes, gauss, 'same')
window = np.mean(np.diff(plot_spikes))
time_vec = np.arange(plot_spikes[0], plot_spikes[-1]+window, window)
fig, ax = plt.subplots()
ax.scatter(plot_spikes, np.ones(len(plot_spikes))*10, marker='|', color='k')
ax.plot(time_vec, smoothed_spikes)
plt.show()
#embed()
#exit()
#hist_data = plt.hist(plot_spikes, bins=np.arange(-200, 400, 20))
#ax.plot(hist_data[1][:-1], hist_data[0])

View File

@ -2,7 +2,7 @@ import numpy as np
def zero_crossing(eod, time):
threshold = 0;
threshold = 0
shift_eod = np.roll(eod, 1)
eod_times = time[(eod >= threshold) & (shift_eod < threshold)]
sampling_rate = 40000.0
@ -10,9 +10,16 @@ def zero_crossing(eod,time):
return eod_idx
def vector_strength(spike_times, eod_durations)
alphas = spike_times/ eod_durations
cs = (1/len(spike_times))*np.sum(np.cos(alphas))^2
sn = (1/len(spike_times))*np.sum(np.sin(alphas))^2
vs = np.sprt(cs+sn)
def vector_strength(spike_times, eod_durations):
n = len(spike_times)
phase_times = np.zeros(len(spike_times))
for i, idx in enumerate(spike_times):
phase_times[i] = (spike_times[i] / eod_durations[i]) * 2 * np.pi
vs = np.sqrt((1/n*sum(np.cos(phase_times)))**2 + (1/n*sum(np.sin(phase_times)))**2)
return vs
def gaussian(x, mu, sig):
y = np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.)))
return y

25
code/vector_phase.py Normal file
View File

@ -0,0 +1,25 @@
from read_baseline_data import *
from utility import *
#import nix_helpers as nh
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed #Funktionen importieren
#Zeitpunkte einer EOD über Zero-crossings finden, die in einer Steigung liegen
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
time,eod = read_baseline_eod(os.path.join(data_dir, dataset))
spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))
print(len(spike_times))
eod_times = zero_crossing(eod,time)
eod_durations = np.diff(eod_times)
print(len(spike_times))
print(len(eod_durations))
#for st in spike_times:
#et = eod_times[eod_times < st]
#dt = st - et
#vs = vector_strength(spike_times, eod_durations)