This commit is contained in:
efish 2018-11-22 09:42:43 +01:00
commit b33a051fd1
10 changed files with 84 additions and 32 deletions

View File

@ -58,7 +58,7 @@ axs[1,1].set_xlabel('Time [ms]')
freq = list(df_map['-50Hz']) freq = list(df_map['-50Hz'])
ls_mod = [] ls_mod = []
beat_mods = [] ls_beat = []
for k in freq: for k in freq:
e1 = eod[k] e1 = eod[k]
zeit = np.asarray(e1[0]) zeit = np.asarray(e1[0])
@ -69,14 +69,19 @@ for k in freq:
time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)] time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)]
eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)] eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)]
beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)] beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)]
chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp
beat_mod = np.std(beat_cut) #Std vom Bereich vor dem Chirp ls_mod.append(chirp_mod) #in die richtige Reihenfolge bringen?
ls_mod.append(chirp_mod) #momentan nicht nach Chirp-Platz sortiert, sondern nacheinander
beat_mods.append(beat_mod)
#erst beat_cuts auf die gleiche Länge bringen!
ls_beat.append(beat_cut)
#Länge des Mods ist 160, 16 Wiederholungen mal 10 Chirps pro Trial #beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp
#Verwendung der Std für die Amplitudenmodulation? plt.figure()
plt.scatter(np.arange(0,len(ls_mod),1), ls_mod)
plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))/2, color = 'violet')
plt.show()

View File

@ -4,7 +4,7 @@ from utility import *
#import nix_helpers as nh #import nix_helpers as nh
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
from IPython import embed #Funktionen importieren from IPython import embed #Funktionen imposrtieren
data_dir = "../data" data_dir = "../data"
@ -40,18 +40,44 @@ plt.show()
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes) df_map = map_keys(chirp_spikes)
ls_rate = {}
for i in df_map.keys(): for i in df_map.keys():
freq = list(df_map[i]) freq = list(df_map[i])
ls_rate[i] = []
for k in freq: for k in freq:
spikes = chirp_spikes[k] for phase in chirp_spikes[k]:
phase_map = map_keys(spikes) spikes = chirp_spikes[k][phase]
for p in phase_map: rate = len(spikes)/ 1.2
spike_rate = 1./ np.diff(p) ls_rate[i].append(rate)
plt.figure()
sort_df = sorted(df_map.keys(),reverse = False)
print(sort_df)
for i in sort_df:
plt.plot(np.arange(0,len(ls_rate[i]),1),ls_rate[i], label = i)
plt.vlines(10, ymin = 200, ymax = 300)
plt.vlines(30, ymin = 200, ymax = 300)
plt.vlines(50, ymin = 200, ymax = 300)
plt.vlines(70, ymin = 200, ymax = 300)
plt.vlines(90, ymin = 200, ymax = 300)
plt.vlines(110, ymin = 200, ymax = 300)
plt.vlines(130, ymin = 200, ymax = 300)
plt.vlines(150, ymin = 200, ymax = 300)
plt.legend()
plt.show()
print(spike_rate)
#
# plt.plot(spikes, rate)
# plt.show()
#mittlere Feuerrate einer Frequenz auf Frequenz
plt.figure()
ls_mean = []
for i in sort_df:
mean = np.mean(ls_rate[i])
ls_mean.append(mean)
plt.plot(np.arange(0,len(ls_mean),1),ls_mean)
plt.show()

View File

@ -10,8 +10,10 @@ data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1" dataset = "2018-11-09-ad-invivo-1"
# parameters for binning, smoothing and plotting # parameters for binning, smoothing and plotting
num_bin = 12 num_bin = 12
window = sampling_rate window = 1
time_axis = np.arange(-50, 50, 1/sampling_rate) time_axis = np.arange(-50, 50, 1/sampling_rate)
bin_size = 1
spike_bins = np.arange(-50, 50+bin_size, bin_size)
# read data from files # read data from files
spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
@ -60,22 +62,43 @@ for deltaf in df_map.keys():
df_phase_time[deltaf][idx] = [spikes_cut] df_phase_time[deltaf][idx] = [spikes_cut]
df_phase_binary[deltaf][idx] = binary_spikes df_phase_binary[deltaf][idx] = binary_spikes
# for plotting iterate over delta f and phases # for plotting and calculating iterate over delta f and phases
for df in df_phase_time.keys(): for df in df_phase_time.keys():
for phase in df_phase_time[df].keys(): for phase in df_phase_time[df].keys():
# plot
plot_trials = df_phase_time[df][phase] plot_trials = df_phase_time[df][phase]
plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0) plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0)
smoothed_spikes = smooth(plot_trials_binary, window) # calculation
overall_spikerate = (np.sum(plot_trials_binary)/len(plot_trials_binary))*sampling_rate*1000
'''
spike_rate = np.zeros(len(spike_bins)-1)
for idx in range(len(spike_bins)-1):
bin_start = spike_bins[idx]*sampling_rate
bin_end = spike_bins[idx+1]*sampling_rate
spike_rate[idx] = np.sum(plot_trials_binary[bin_start:bin_end])/bin_size*sampling_rate
print(np.std(spike_rate))
plt.plot(spike_rate)
plt.show()
embed()
exit()
'''
smoothed_spikes = smooth(plot_trials_binary, window, 1./sampling_rate)
fig, ax = plt.subplots(2, 1) fig, ax = plt.subplots(2, 1, sharex=True)
for i, trial in enumerate(plot_trials): for i, trial in enumerate(plot_trials):
ax[0].scatter(trial, np.ones(len(trial))+i, marker='|', color='k') ax[0].scatter(trial, np.ones(len(trial))+i, marker='|', color='k')
ax[1].plot(time_axis, smoothed_spikes) ax[1].plot(time_axis, smoothed_spikes*1000)
ax[0].set_title(df) ax[0].set_title(df)
ax[0].set_ylabel('repetition', fontsize=12) ax[0].set_ylabel('repetition', fontsize=12)
ax[1].set_xlabel('time [ms]', fontsize=12) ax[1].set_xlabel('time [ms]', fontsize=12)
ax[1].set_ylabel('firing rate [?]', fontsize=12) ax[1].set_ylabel('firing rate [Hz]', fontsize=12)
print(overall_spikerate)
plt.show() plt.show()

View File

@ -20,18 +20,16 @@ def vector_strength(spike_times, eod_durations):
return vs return vs
def gaussian(x, mu, sig): def gaussian(x, sig):
y = np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.))) y = np.exp(-0.5 * (x/sig)**2) / np.sqrt(2*np.pi)/sig
return y return y
def smooth(data, window): def smooth(data, window, dt):
mu = 1
sigma = window sigma = window
time_gauss = np.arange(-4 * sigma, 4 * sigma, 1) time_gauss = np.arange(-4 * sigma, 4 * sigma, dt)
gauss = gaussian(time_gauss, mu, sigma) gauss = gaussian(time_gauss, sigma)
gauss_norm = gauss/(np.sum(gauss)/len(gauss)) smoothed_data = np.convolve(data, gauss, 'same')
smoothed_data = np.convolve(data, gauss_norm, 'same')
return smoothed_data return smoothed_data

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.