Mo
This commit is contained in:
parent
1daf5c244e
commit
9d971b44e5
@ -1,5 +1,5 @@
|
||||
from read_chirp_data import *
|
||||
#import nix_helpers as nh
|
||||
import nix_helpers as nh
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
@ -27,14 +27,14 @@ for k in eod.keys():
|
||||
else:
|
||||
df_map[df] = [k]
|
||||
|
||||
print(ch) #die Chirphöhe wird ausgegeben, um zu bestimmen, ob Chirps oder Chirps large benutzt wurde
|
||||
#print(ch) #die Chirphöhe wird ausgegeben, um zu bestimmen, ob Chirps oder Chirps large benutzt wurde
|
||||
|
||||
|
||||
|
||||
#die äußere Schleife geht für alle Keys durch und somit durch alle dfs
|
||||
#die innnere Schleife bildet die 16 Wiederholungen einer Frequenz in 4 Subplots ab
|
||||
for idx in df_map.keys():
|
||||
freq = list(df_map[idx])
|
||||
for i in df_map.keys():
|
||||
freq = list(df_map[i])
|
||||
fig,axs = plt.subplots(2, 2, sharex = True, sharey = True)
|
||||
|
||||
for idx, k in enumerate(freq):
|
||||
@ -58,18 +58,44 @@ for idx in df_map.keys():
|
||||
|
||||
|
||||
fig.suptitle('EOD for chirps', fontsize = 16)
|
||||
plt.show()
|
||||
axs[0,0].set_ylabel('Amplitude [mV]')
|
||||
axs[0,1].set_xlabel('Amplitude [mV]')
|
||||
axs[1,0].set_xlabel('Time [ms]')
|
||||
axs[1,1].set_xlabel('Time [ms]')
|
||||
#axs kann nur einzelne Label erzeugen, nicht generell möglich wie beim Titel
|
||||
|
||||
|
||||
|
||||
#Problem: axs hat keine label-Funktion, also müsste axes nochmal definiert werden. Momentan erscheint Schrift nur auf einem der Subplots
|
||||
for i in df_map.keys():
|
||||
freq = list(df_map[i])
|
||||
|
||||
#ax = plt.gca()
|
||||
#ax.set_ylabel('Time [ms]')
|
||||
#ax.set_xlabel('Amplitude [mV]')
|
||||
#ax.label_outer()
|
||||
ct = times[freq[1]]
|
||||
ct1 = ct[1]
|
||||
|
||||
e1 = eod[k]
|
||||
zeit = np.asarray(e1[0])
|
||||
ampl = np.asarray(e1[1])
|
||||
|
||||
time_cut = zeit[(zeit > ct1-25) & (zeit < ct1+25)]
|
||||
eod_cut = ampl[(zeit > ct1-25) & (zeit < ct1+25)]
|
||||
|
||||
change = ampl[int(ct1)]
|
||||
|
||||
plt.figure(12)
|
||||
plt.plot(time_cut, eod_cut)
|
||||
plt.scatter(ct1, 3, color = 'green', s= 30)
|
||||
plt.title('Chirp reaction Ampl.')
|
||||
plt.xlabel('Time [ms]')
|
||||
plt.ylabel('Amplitude[mV]')
|
||||
#plt.show()
|
||||
|
||||
|
||||
#4. Chirps einer Phase zuordnen - zusammen plotten?
|
||||
|
||||
|
||||
|
||||
#next Step: EOD-Amplitudenmodulation für beat aber OHNE Chirps plotten
|
||||
#allerdings: in der Aufnahme sind nur kurze Zeitfenster ohne Chirps zu finden!
|
||||
|
||||
|
||||
|
||||
#next Step: relative Amplitudenmodulation berechnen, Max und Min der Amplitude bestimmen, EOD und Chirps zuordnen, Unterschied berechnen
|
||||
|
@ -1,16 +1,18 @@
|
||||
from read_baseline_data import *
|
||||
#import nix_helpers as nh
|
||||
from read_chirp_data import *
|
||||
import nix_helpers as nh
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from IPython import embed #Funktionen importieren
|
||||
|
||||
|
||||
data_dir = "../data"
|
||||
dataset = "2018-11-09-aa-invivo-1"
|
||||
dataset = "2018-11-09-ad-invivo-1"
|
||||
#data = ("2018-11-09-aa-invivo-1", "2018-11-09-ab-invivo-1", "2018-11-09-ac-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1")
|
||||
spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))
|
||||
|
||||
|
||||
#spike_frequency = len(spike_times) / spike_times[-1]
|
||||
|
||||
spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))
|
||||
#inst_frequency = 1. / np.diff(spike_times)
|
||||
spike_rate = np.diff(spike_times)
|
||||
|
||||
@ -21,7 +23,6 @@ plt.hist(spike_rate,x)
|
||||
mu = np.mean(spike_rate)
|
||||
sigma = np.std(spike_rate)
|
||||
cv = sigma/mu
|
||||
print(cv)
|
||||
|
||||
plt.title('A.lepto ISI Histogramm', fontsize = 14)
|
||||
plt.xlabel('duration ISI[ms]', fontsize = 12)
|
||||
@ -32,3 +33,32 @@ plt.yticks(fontsize = 12)
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
#Nyquist-Theorem Plot:
|
||||
|
||||
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
|
||||
|
||||
|
||||
df_map = {}
|
||||
#Keys werden nach df sortiert ausgegeben
|
||||
for k in chirp_spikes.keys():
|
||||
df = k[1]
|
||||
ch = k[3]
|
||||
if df in df_map.keys():
|
||||
df_map[df].append(k)
|
||||
else:
|
||||
df_map[df] = [k]
|
||||
|
||||
|
||||
for i in df_map.keys():
|
||||
freq = list(df_map[i])
|
||||
for k in freq:
|
||||
|
||||
spikes = chirp_spikes[k]
|
||||
trial = spikes[1]
|
||||
print(trial)
|
||||
#
|
||||
# plt.plot(spikes, rate)
|
||||
# plt.show()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user