diff --git a/code/base_chirps.py b/code/base_chirps.py index 1112d78..94307c0 100644 --- a/code/base_chirps.py +++ b/code/base_chirps.py @@ -58,7 +58,7 @@ axs[1,1].set_xlabel('Time [ms]') freq = list(df_map['-50Hz']) ls_mod = [] -beat_mods = [] +ls_beat = [] for k in freq: e1 = eod[k] zeit = np.asarray(e1[0]) @@ -69,14 +69,19 @@ for k in freq: time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)] eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)] beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)] - + chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp - beat_mod = np.std(beat_cut) #Std vom Bereich vor dem Chirp - ls_mod.append(chirp_mod) - beat_mods.append(beat_mod) + ls_mod.append(chirp_mod) #in die richtige Reihenfolge bringen? + #momentan nicht nach Chirp-Platz sortiert, sondern nacheinander + + #erst beat_cuts auf die gleiche Länge bringen! + ls_beat.append(beat_cut) -#Länge des Mods ist 160, 16 Wiederholungen mal 10 Chirps pro Trial -#Verwendung der Std für die Amplitudenmodulation? +#beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp +plt.figure() +plt.scatter(np.arange(0,len(ls_mod),1), ls_mod) +plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))/2, color = 'violet') +plt.show() diff --git a/code/base_spikes.py b/code/base_spikes.py index 2fd0e9f..3984c0f 100644 --- a/code/base_spikes.py +++ b/code/base_spikes.py @@ -4,7 +4,7 @@ from utility import * #import nix_helpers as nh import matplotlib.pyplot as plt import numpy as np -from IPython import embed #Funktionen importieren +from IPython import embed #Funktionen imposrtieren data_dir = "../data" @@ -40,18 +40,44 @@ plt.show() chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(chirp_spikes) - - +ls_rate = {} for i in df_map.keys(): freq = list(df_map[i]) + ls_rate[i] = [] for k in freq: - spikes = chirp_spikes[k] - phase_map = map_keys(spikes) - for p in phase_map: - spike_rate = 1./ np.diff(p) + for phase in chirp_spikes[k]: + spikes = chirp_spikes[k][phase] + rate = len(spikes)/ 1.2 + ls_rate[i].append(rate) + + +plt.figure() +sort_df = sorted(df_map.keys(),reverse = False) +print(sort_df) + +for i in sort_df: + plt.plot(np.arange(0,len(ls_rate[i]),1),ls_rate[i], label = i) + +plt.vlines(10, ymin = 200, ymax = 300) +plt.vlines(30, ymin = 200, ymax = 300) +plt.vlines(50, ymin = 200, ymax = 300) +plt.vlines(70, ymin = 200, ymax = 300) +plt.vlines(90, ymin = 200, ymax = 300) +plt.vlines(110, ymin = 200, ymax = 300) +plt.vlines(130, ymin = 200, ymax = 300) +plt.vlines(150, ymin = 200, ymax = 300) +plt.legend() +plt.show() + -print(spike_rate) -# -# plt.plot(spikes, rate) -# plt.show() +#mittlere Feuerrate einer Frequenz auf Frequenz + +plt.figure() +ls_mean = [] +for i in sort_df: + mean = np.mean(ls_rate[i]) + ls_mean.append(mean) + +plt.plot(np.arange(0,len(ls_mean),1),ls_mean) +plt.show()