wuhu
This commit is contained in:
parent
99274191f8
commit
7bb027ba22
@ -5,7 +5,13 @@ import numpy as np
|
||||
|
||||
data_dir = '../data'
|
||||
#dataset = '2018-11-09-ad-invivo-1'
|
||||
data = ["2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1"]
|
||||
data = ["2018-11-09-ad-invivo-1",
|
||||
"2018-11-13-aa-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1",
|
||||
"2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1",
|
||||
"2018-11-14-ac-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ak-invivo-1",
|
||||
"2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1",
|
||||
"2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-af-invivo-1",
|
||||
"2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1"]
|
||||
|
||||
for dataset in data:
|
||||
# read eod and time of baseline
|
||||
|
@ -8,7 +8,8 @@ from IPython import embed
|
||||
# plot and data values
|
||||
inch_factor = 2.54
|
||||
data_dir = '../data'
|
||||
dataset = '2018-11-09-ad-invivo-1'
|
||||
#dataset = '2018-11-09-ad-invivo-1'
|
||||
dataset = '2018-11-14-al-invivo-1'
|
||||
|
||||
# read eod and time of baseline
|
||||
time, eod = read_baseline_eod(os.path.join(data_dir, dataset))
|
||||
@ -29,8 +30,9 @@ plt.yticks(fontsize = 18)
|
||||
ax.spines["top"].set_visible(False)
|
||||
ax.spines["right"].set_visible(False)
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
#plt.show()
|
||||
plt.savefig('isis.pdf')
|
||||
#plt.savefig('isis.pdf')
|
||||
exit()
|
||||
|
||||
# calculate coefficient of variation
|
||||
|
@ -1,6 +1,7 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from read_chirp_data import *
|
||||
from read_baseline_data import *
|
||||
from utility import *
|
||||
from IPython import embed
|
||||
|
||||
@ -11,27 +12,37 @@ cut_window = 40
|
||||
cut_range = np.arange(-cut_window * sampling_rate, 0, 1)
|
||||
window = 1
|
||||
|
||||
'''
|
||||
# norm: -150, 150, 300
|
||||
data = ["2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1","2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1",
|
||||
"2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1"]
|
||||
# norm: -150, 150, 300 aa, #ac, aj??
|
||||
data = ["2018-11-13-al-invivo-1"]#, "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1",
|
||||
#"2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1"]
|
||||
|
||||
'''
|
||||
# norm: -50
|
||||
data = ["2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1","2018-11-20-ad-invivo-1",
|
||||
"2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1",
|
||||
"2018-11-20-ai-invivo-1"]
|
||||
|
||||
'''
|
||||
data = ["2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1",
|
||||
"2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1",
|
||||
"2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1"]
|
||||
'''
|
||||
#data = ["2018-11-09-ad-invivo-1", "2018-11-14-af-invivo-1"]
|
||||
|
||||
rates = {}
|
||||
|
||||
for dataset in data:
|
||||
print(dataset)
|
||||
# read baseline spikes
|
||||
base_spikes = read_baseline_spikes(os.path.join(data_dir, dataset))
|
||||
base_spikes = base_spikes[1000:2000]
|
||||
spikerate = len(base_spikes)/base_spikes[-1]
|
||||
print(spikerate)
|
||||
|
||||
# read spikes during chirp stimulation
|
||||
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
|
||||
df_map = map_keys(spikes)
|
||||
print(dataset)
|
||||
|
||||
# iterate over df
|
||||
for df in df_map.keys():
|
||||
'''
|
||||
if df == 50:
|
||||
@ -39,8 +50,8 @@ for dataset in data:
|
||||
else:
|
||||
continue
|
||||
'''
|
||||
|
||||
print(df)
|
||||
|
||||
#print(df)
|
||||
rep_rates = []
|
||||
beat_duration = int(abs(1 / df) * 1000)
|
||||
beat_window = 0
|
||||
@ -56,9 +67,12 @@ for dataset in data:
|
||||
binary_spikes = np.isin(cut_range, spikes_idx) * 1
|
||||
smoothed_data = smooth(binary_spikes, window, 1 / sampling_rate)
|
||||
train = smoothed_data[window:beat_window+window]
|
||||
rep_rates.append(np.std(train))
|
||||
norm_train = train*1000#/spikerate
|
||||
rep_rates.append(np.std(norm_train))#/spikerate)
|
||||
break
|
||||
df_rate = np.mean(rep_rates)
|
||||
df_rate = np.median(rep_rates)/spikerate
|
||||
#embed()
|
||||
#exit()
|
||||
if df in rates.keys():
|
||||
rates[df].append(df_rate)
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user